9 research outputs found

    Genetic and Biochemical Factors Related to the Risk and Disability Progression in Multiple Sclerosis

    Get PDF
    Sclerosis multiplex (multiple sclerosis, MS) is a chronic autoimmune inflammatory disease of the central nervous system. The immune regulatory defects lead to the process of inflammation and neurodegenerationthat results in the deterioration of neurological functions. It is still unclear as to why MS is so devastating and rapidly progressive in one patient and less so in another. It is known that the etiopathogenesis of MS is very complex, and many factors can be involved in the risk and character of the disease and its progression. In this chapter, we discuss the general molecular and cellular mechanisms of action of genetic and biochemical factors that are related to immune system regulation and thus can be connected to the individually varying risk and disability progression of MS. We found that gene variants of the gene polymorphism rs6897932 in interleukin 7 receptor α chain gene rs10735810 in vitamin D receptor gene and HLA-DR and HLA-DQ genes as well as the serum level of vitamin D are associated with MS risk or disability progression in Central European Slovak population

    The Role of Over-Nutrition and Obesity in Multiple Sclerosis

    Get PDF
    In countries with high standard of living, lowered risk of infectious diseases is parallel to increased incidence of autoimmune diseases. One of the autoimmune disorders, multiple sclerosis, affects genetically susceptible individuals. Genetic susceptibility is supposed to interact with lifestyle and environmental factors in developing autoimmunity in MS. From this point of view, epigenetics provides the bridge between the external environment and the internal genetic system. In MS, environmental burden can modulate gene expression by epigenetic modification of chromatin components, microRNAs or by subtle changes in DNA methylation. Our paper focuses on describing the epigenetic mechanisms linking environmental factors with pathogenesis of multiple sclerosis. We summarise current knowledge about the role of over-nutrition and obesity as epigenetic factors in multiple sclerosis

    The Intricate Network of Adipokines and Stroke

    Get PDF
    Cerebrovascular disorders, particularly ischemic stroke, are one of the most common neurological disorders. High rates of overweight and obesity support an interest in the role of adipose tissue and adipose tissue releasing cytokines in inducing associated comorbidities. Adipokines can serve as a key messenger to central energy homeostasis and metabolic homeostasis. They can contribute to the crosstalk between adipose tissue and brain. However recent research has offered ambiguous data on the network of adipose tissue, adipokines, and vascular disorders. In our paper we provide a critical insight into the role of adipokines in evolution of ischemic stroke

    Anaplastic astrocytoma mimicking progressive multifocal leucoencephalopathy: a case report and review of the overlapping syndromes

    No full text
    Abstract Background Co-occurrence of multiple sclerosis (MS) and glial tumours (GT) is uncommon although occasionally reported in medical literature. Interpreting the overlapping radiologic and clinical characteristics of glial tumours, MS lesions, and progressive multifocal leukoencephalopathy (PML) can be a significant diagnostic challenge. Case presentation We report a case of anaplastic astrocytoma mimicking PML in a 27-year-old patient with a 15-year history of MS. She was treated with interferon, natalizumab and finally fingolimod due to active MS. Follow-up MRI, blood and cerebrospinal fluid examinations, and biopsy were conducted, but only the latter was able to reveal the cause of progressive worsening of patient’s disease. Conclusions Anaplastic astrocytoma misdiagnosed as PML has not yet been described. We suppose that the astrocytoma could have evolved from a low grade glioma to anaplastic astrocytoma over time, as the tumour developed adjacent to typical MS plaques. The role of the immunomodulatory treatment as well as other immunological factors in the malignant transformation can only be hypothesised. We discuss clinical, laboratory and diagnostic aspects of a malignant GT, MS lesions and PML. The diagnosis of malignant GT must be kept in mind when an atypical lesion develops in a patient with MS

    Alzheimer’s Disease Risk Variant rs3865444 in the CD33 Gene: A Possible Role in Susceptibility to Multiple Sclerosis

    No full text
    Polymorphisms in genes encoding receptors that modulate the activity of microglia and macrophages are attractive candidates for participation in genetic susceptibility to multiple sclerosis (MS). The aims of the study were to (1) investigate the association between Alzheimer’s disease-linked variant rs3865444:C>A in the CD33 gene and MS risk, (2) assess the effect of the strongest MS risk allele HLA-DRB1*15:01 on this association, and (3) analyze the correlation of rs3865444 with selected clinical phenotypes, i.e., age of onset and disease severity. CD33 rs3865444 was genotyped in a cohort of 579 patients and 1145 controls and its association with MS risk and clinical phenotypes was analyzed by logistic and linear regression analysis, respectively. Statistical evaluation revealed that rs3865444 reduces the risk of MS in the HLA-DRB1*15:01-positive subpopulation but not in the cohort negative for HLA-DRB1*15:01. A significant antagonistic epistasis between rs3865444 A and HLA-DRB1*15:01 alleles in the context of MS risk was detected by the interaction synergy factor analysis. Comparison of allele and genotype distribution between relapsing-remitting MS, secondary progressive MS, and control groups revealed that rs3865444 C to A substitution may also be associated with a decreased risk of transition of MS to its secondary progressive form, irrespective of the HLA-DRB1*15:01 carrier status. On the other hand, no correlation could be found between rs3865444 and the age of disease onset or MS severity score. Future studies are required to shed more light on the role of CD33 in MS pathogenesis
    corecore