68 research outputs found
Novel function and regulation of mutagenic DNA polymerases in Escherichia coli
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2007.Vita.Includes bibliographical references.The observation that mutations in the Escherichia coli genes umuC+ and umuD+ abolish mutagenesis induced by UV-light strongly supported the counterintuitive notion that such mutagenesis is an active rather than passive process. Biochemical studies have revealed that umuC+ and its homolog dinB+ encode novel, low to moderate fidelity DNA polymerases with the ability to catalyze synthesis on imperfect DNA templates in a process termed translesion synthesis (TLS). Similar enzymes exist in nearly all organisms, constituting the Y-superfamily of DNA polymerases. Although DinB is the only Y-family DNA polymerase conserved among all domains of life, its precise function has remained elusive. Here we show that AdinB E. coli strains are sensitive to DNA damaging agents that form lesions at the N2 position of guanine. In vitro bypass studies of an N2-guanine adduct by DinB demonstrate considerable preference for correct nucleotide insertion and an increased catalytic proficiency on the lesion-bearing template relative to undamaged DNA. Moreover, DinB and its mammalian and archaeal orthologs possess similar substrate specificities. Mutation of a single residue in the active site ofE. coli DinB suggests that its enhanced activity is coupled to lesion recognition and that its TLS function is required for resistance to DNA damaging agents in vivo.(cont.) Regulation of the mutagenic potential of DinB is critical for maintenance of genomic integrity. We present evidence indicating that abortive TLS products generated by a DinB variant are subject to the proofreading function of DNA polymerase III. Moreover, both the TLS activity and -1 frameshift mutator potential of DinB are modulated in a highly sophisticated manner by the DNA damage-inducible proteins RecA and UmuD2. These biochemical data, coupled with genetic analyses and molecular modeling, indicate that DinB is a specialized and remarkably controlled translesion DNA polymerase. In addition, we present evidence that the umuC+participates in several novel biological functions in addition to its established role in TLS. A novel umuC gain-of-function allele confers striking resistance to hydroxyurea and umuC+ mediates the expression of genes and physiological responses under conditions of SOS induction. Taken together, these observations hint at at a largely uncharacterized function of Y-family polymerases in sculpting physiological responses, including active mechanisms of cell death, in response to environmental stress.by Daniel F. Jarosz.Ph.D
Cryptic Variation in Morphological Evolution: HSP90 as a Capacitor for Loss of Eyes in Cavefish
In the process of morphological evolution, the extent to which cryptic, preexisting variation provides a substrate for natural selection has been controversial. We provide evidence that heat shock protein 90 (HSP90) phenotypically masks standing eye-size variation in surface populations of the cavefish Astyanax mexicanus. This variation is exposed by HSP90 inhibition and can be selected for, ultimately yielding a reduced-eye phenotype even in the presence of full HSP90 activity. Raising surface fish under conditions found in caves taxes the HSP90 system, unmasking the same phenotypic variation as does direct inhibition of HSP90. These results suggest that cryptic variation played a role in the evolution of eye loss in cavefish and provide the first evidence for HSP90 as a capacitor for morphological evolution in a natural setting
Neurodegenerative Disease and the NLRP3 Inflammasome.
The prevalence of neurodegenerative disease has increased significantly in recent years, and with a rapidly aging global population, this trend is expected to continue. These diseases are characterised by a progressive neuronal loss in the brain or peripheral nervous system, and generally involve protein aggregation, as well as metabolic abnormalities and immune dysregulation. Although the vast majority of neurodegeneration is idiopathic, there are many known genetic and environmental triggers. In the past decade, research exploring low-grade systemic inflammation and its impact on the development and progression of neurodegenerative disease has increased. A particular research focus has been whether systemic inflammation arises only as a secondary effect of disease or is also a cause of pathology. The inflammasomes, and more specifically the NLRP3 inflammasome, a crucial component of the innate immune system, is usually activated in response to infection or tissue damage. Dysregulation of the NLRP3 inflammasome has been implicated in the progression of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. This review aims to summarise current literature on the role of the NLRP3 inflammasome in the pathogenesis of neurodegenerative diseases, and recent work investigating NLRP3 inflammasome inhibition as a potential future therapy
Biomolecular Condensation: A New Phase in Cancer Research
UNLABELLED: Multicellularity was a watershed development in evolution. However, it also meant that individual cells could escape regulatory mechanisms that restrict proliferation at a severe cost to the organism: cancer. From the standpoint of cellular organization, evolutionary complexity scales to organize different molecules within the intracellular milieu. The recent realization that many biomolecules can phase-separate into membraneless organelles, reorganizing cellular biochemistry in space and time, has led to an explosion of research activity in this area. In this review, we explore mechanistic connections between phase separation and cancer-associated processes and emerging examples of how these become deranged in malignancy.
SIGNIFICANCE: One of the fundamental functions of phase separation is to rapidly and dynamically respond to environmental perturbations. Importantly, these changes often lead to alterations in cancer-relevant pathways and processes. This review covers recent advances in the field, including emerging principles and mechanisms of phase separation in cancer
Capturing health and eating status through a nutritional perception screening questionnaire (NPSQ9) in a randomised internet-based personalised nutrition intervention : the Food4Me study
BACKGROUND: National guidelines emphasize healthy eating to promote wellbeing and prevention of non-communicable diseases. The perceived healthiness of food is determined by many factors affecting food intake. A positive perception of healthy eating has been shown to be associated with greater diet quality. Internet-based methodologies allow contact with large populations. Our present study aims to design and evaluate a short nutritional perception questionnaire, to be used as a screening tool for assessing nutritional status, and to predict an optimal level of personalisation in nutritional advice delivered via the Internet. METHODS: Data from all participants who were screened and then enrolled into the Food4Me proof-of-principle study (n = 2369) were used to determine the optimal items for inclusion in a novel screening tool, the Nutritional Perception Screening Questionnaire-9 (NPSQ9). Exploratory and confirmatory factor analyses were performed on anthropometric and biochemical data and on dietary indices acquired from participants who had completed the Food4Me dietary intervention (n = 1153). Baseline and intervention data were analysed using linear regression and linear mixed regression, respectively. RESULTS: A final model with 9 NPSQ items was validated against the dietary intervention data. NPSQ9 scores were inversely associated with BMI (β = -0.181, p < 0.001) and waist circumference (Β = -0.155, p < 0.001), and positively associated with total carotenoids (β = 0.198, p < 0.001), omega-3 fatty acid index (β = 0.155, p < 0.001), Healthy Eating Index (HEI) (β = 0.299, p < 0.001) and Mediterranean Diet Score (MDS) (β = 0. 279, p < 0.001). Findings from the longitudinal intervention study showed a greater reduction in BMI and improved dietary indices among participants with lower NPSQ9 scores. CONCLUSIONS: Healthy eating perceptions and dietary habits captured by the NPSQ9 score, based on nine questionnaire items, were associated with reduced body weight and improved diet quality. Likewise, participants with a lower score achieved greater health improvements than those with higher scores, in response to personalised advice, suggesting that NPSQ9 may be used for early evaluation of nutritional status and to tailor nutritional advice. TRIAL REGISTRATION: NCT01530139 .Peer reviewedFinal Published versio
Epistatic Roles for Pseudomonas aeruginosa MutS and DinB (DNA Pol IV) in Coping with Reactive Oxygen Species-Induced DNA Damage
Pseudomonas aeruginosa is especially adept at colonizing the airways of individuals afflicted with the autosomal recessive disease cystic fibrosis (CF). CF patients suffer from chronic airway inflammation, which contributes to lung deterioration. Once established in the airways, P. aeruginosa continuously adapts to the changing environment, in part through acquisition of beneficial mutations via a process termed pathoadaptation. MutS and DinB are proposed to play opposing roles in P. aeruginosa pathoadaptation: MutS acts in replication-coupled mismatch repair, which acts to limit spontaneous mutations; in contrast, DinB (DNA polymerase IV) catalyzes error-prone bypass of DNA lesions, contributing to mutations. As part of an ongoing effort to understand mechanisms underlying P. aeruginosa pathoadaptation, we characterized hydrogen peroxide (H2O2)-induced phenotypes of isogenic P. aeruginosa strains bearing different combinations of mutS and dinB alleles. Our results demonstrate an unexpected epistatic relationship between mutS and dinB with respect to H2O2-induced cell killing involving error-prone repair and/or tolerance of oxidized DNA lesions. In striking contrast to these error-prone roles, both MutS and DinB played largely accurate roles in coping with DNA lesions induced by ultraviolet light, mitomycin C, or 4-nitroquinilone 1-oxide. Models discussing roles for MutS and DinB functionality in DNA damage-induced mutagenesis, particularly during CF airway colonization and subsequent P. aeruginosa pathoadaptation are discussed
Recommended from our members
Higher vegetable protein consumption, assessed by an isoenergetic macronutrient exchange model, is associated with a lower presence of overweight and obesity in the web-based Food4me European study
The objective was to evaluate differences in macronutrient intake and to investigate the possible association between consumption of vegetable protein and the risk of overweight/obesity, within the Food4Me randomised, online intervention. Differences in macronutrient consumption among the participating countries grouped by EU Regions (Western Europe, British Isles, Eastern Europe and Southern Europe) were assessed. Relation of protein intake, within isoenergetic exchange patterns, from vegetable or animal sources with risk of overweight/obesity was assessed through the multivariate nutrient density model and a multivariate-adjusted logistic regression. A total of 2413 subjects who completed the Food4Me screening were included, with self-reported data on age, weight, height, physical activity and dietary intake. As success rates on reducing overweight/obesity are very low, form a public health perspective, the elaboration of policies for increasing intakes of vegetable protein and reducing animal protein and sugars, may be a method of combating overweight/obesity at a population level
Association between diet-quality scores, adiposity, total cholesterol and markers of nutritional status in European adults: findings from the Food4Me study
Diet-quality scores (DQS), which are developed across the globe, are used to define adherence to specific eating patterns and have been associated with risk of coronary heart disease and type-II diabetes. We explored the association between five diet-quality scores (Healthy Eating Index, HEI; Alternate Healthy Eating Index, AHEI; MedDietScore, MDS; PREDIMED Mediterranean Diet Score, P-MDS; Dutch Healthy Diet-Index, DHDI) and markers of metabolic health (anthropometry, objective physical activity levels (PAL), and dried blood spot total cholesterol (TC), total carotenoids, and omega-3 index) in the Food4Me cohort, using regression analysis. Dietary intake was assessed using a validated Food Frequency Questionnaire. Participants (n = 1480) were adults recruited from seven European Union (EU) countries. Overall, women had higher HEI and AHEI than men (p < 0.05), and scores varied significantly between countries. For all DQS, higher scores were associated with lower body mass index, lower waist-to-height ratio and waist circumference, and higher total carotenoids and omega-3-index (p trends < 0.05). Higher HEI, AHEI, DHDI, and P-MDS scores were associated with increased daily PAL, moderate and vigorous activity, and reduced sedentary behaviour (p trend < 0.05). We observed no association between DQS and TC. To conclude, higher DQS, which reflect better dietary patterns, were associated with markers of better nutritional status and metabolic health
ASIRI : an ocean–atmosphere initiative for Bay of Bengal
Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859–1884, doi:10.1175/BAMS-D-14-00197.1.Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air–Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI–RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.2017-04-2
Mediterranean Diet Adherence and Genetic Background Roles within a Web-Based Nutritional Intervention: The Food4Me Study
Mediterranean Diet (MedDiet) adherence has been proven to produce numerous health
benefits. In addition, nutrigenetic studies have explained some individual variations in the response to
specific dietary patterns. The present research aimed to explore associations and potential interactions
between MedDiet adherence and genetic background throughout the Food4Me web-based nutritional
intervention. Dietary, anthropometrical and biochemical data from volunteers of the Food4Me study were collected at baseline and after 6 months. Several genetic variants related to metabolic risk features
were also analysed. A Genetic Risk Score (GRS) was derived from risk alleles and a Mediterranean
Diet Score (MDS), based on validated food intake data, was estimated. At baseline, there were no
interactions between GRS and MDS categories for metabolic traits. Linear mixed model repeated
measures analyses showed a significantly greater decrease in total cholesterol in participants with a
low GRS after a 6-month period, compared to those with a high GRS. Meanwhile, a high baseline
MDS was associated with greater decreases in Body Mass Index (BMI), waist circumference and
glucose. There also was a significant interaction between GRS and the MedDiet after the follow-up
period. Among subjects with a high GRS, those with a high MDS evidenced a highly significant
reduction in total carotenoids, while among those with a low GRS, there was no difference associated
with MDS levels. These results suggest that a higher MedDiet adherence induces beneficial effects on
metabolic outcomes, which can be affected by the genetic background in some specific markers
- …