17 research outputs found

    High Performance Transaction Processing on Non-Uniform Hardware Topologies

    Get PDF
    Transaction processing is a mission critical enterprise application that runs on high-end servers. Traditionally, transaction processing systems have been designed for uniform core-to-core communication latencies. In the past decade, with the emergence of multisocket multicores, for the first time we have Islands, i.e., groups of cores that communicate fast among themselves and slower with other groups. In current mainstream servers, each multicore processor corresponds to an Island. As the number of cores on a chip increases, however, we expect that multiple Islands will form within a single processor in the nearby future. In addition, the access latencies to the local memory and to the memory of another server over fast interconnect are converging, thus creating a hierarchy of Islands within a group of servers. Non-uniform hardware topologies pose a significant challenge to the scalability and the predictability of performance of transaction processing systems. Distributed transaction processing systems can alleviate this problem; however, no single deployment configuration is optimal for all workloads and hardware topologies. In order to fully utilize the available processing power, a transaction processing system needs to adapt to the underlying hardware topology and tune its configuration to the current workload. More specifically, the system should be able to detect any changes to the workload and hardware topology, and adapt accordingly without disrupting the processing. In this thesis, we first systematically quantify the impact of hardware Islands on deployment configurations of distributed transaction processing systems. We show that none of these configurations is optimal for all workloads, and the choice of the optimal configuration depends on the combination of the workload and hardware topology. In the cluster setting, on the other hand, the choice of optimal configuration additionally depends on the properties of the communication channel between the servers. We address this challenge by designing a dynamic shared-everything system that adapts its data structures automatically to hardware Islands. To ensure good performance in the presence of shifting workload patterns, we use a lightweight partitioning and placement mechanism to balance the load and minimize the synchronization overheads across Islands. Overall, we show that masking the non-uniformity of inter-core communication is critical for achieving predictably high performance for latency-sensitive applications, such as transaction processing. With clusters of a handful of multicore chips with large main memories replacing high-end many-socket servers, the deployment rules of thumb identified in our analysis have a potential to significantly reduce the synchronization and communication costs of transaction processing. As workloads become more dynamic and diverse, while still running on partitioned infrastructure, the lightweight monitoring and adaptive repartitioning mechanisms proposed in this thesis will be applicable to a wide range of designs for which traditional offline schemes are impractical

    OLTP on Hardware Islands

    Get PDF
    Modern hardware is abundantly parallel and increasingly heterogeneous. The numerous processing cores have non-uniform access latencies to the main memory and to the processor caches, which causes variability in the communication costs. Unfortunately, database systems mostly assume that all processing cores are the same and that microarchitecture differences are not significant enough to appear in critical database execution paths. As we demonstrate in this paper, however, hardware heterogeneity does appear in the critical path and conventional database architectures achieve suboptimal and even worse, unpredictable performance. We perform a detailed performance analysis of OLTP deployments in servers with multiple cores per CPU (multicore) and multiple CPUs per server (multisocket). We compare different database deployment strategies where we vary the number and size of independent database instances running on a single server, from a single shared-everything instance to fine-grained shared-nothing configurations. We quantify the impact of non-uniform hardware on various deployments by (a) examining how efficiently each deployment uses the available hardware resources and (b) measuring the impact of distributed transactions and skewed requests on different workloads. Finally, we argue in favor of shared-nothing deployments that are topology- and workload-aware and take advantage of fast on-chip communication between islands of cores on the same socket.Comment: VLDB201

    Micro-architectural analysis of in-memory OLTP: Revisited

    Get PDF
    Micro-architectural behavior of traditional disk-based online transaction processing (OLTP) systems has been investigated extensively over the past couple of decades. Results show that traditional OLTP systems mostly under-utilize the available micro-architectural resources. In-memory OLTP systems, on the other hand, process all the data in main-memory and, therefore, can omit the buffer pool. Furthermore, they usually adopt more lightweight concurrency control mechanisms, cache-conscious data structures, and cleaner codebases since they are usually designed from scratch. Hence, we expect significant differences in micro-architectural behavior when running OLTP on platforms optimized for in-memory processing as opposed to disk-based database systems. In particular, we expect that in-memory systems exploit micro-architectural features such as instruction and data caches significantly better than disk-based systems. This paper sheds light on the micro-architectural behavior of in-memory database systems by analyzing and contrasting it to the behavior of disk-based systems when running OLTP workloads. The results show that, despite all the design changes, in-memory OLTP exhibits very similar micro-architectural behavior to disk-based OLTP: more than half of the execution time goes to memory stalls where instruction cache misses or the long-latency data misses from the last-level cache (LLC) are the dominant factors in the overall execution time. Even though ground-up designed in-memory systems can eliminate the instruction cache misses, the reduction in instruction stalls amplifies the impact of LLC data misses. As a result, only 30% of the CPU cycles are used to retire instructions, and 70% of the CPU cycles are wasted to stalls for both traditional disk-based and new generation in-memory OLTP

    ATraPos: Adaptive Transaction Processing on Hardware Islands

    Get PDF
    Nowadays, high-performance transaction processing applications increasingly run on multisocket multicore servers. Such architectures exhibit non-uniform memory access latency as well as non-uniform thread communication costs. Unfortunately, traditional shared-everything database management systems are designed for uniform inter-core communication speeds. This causes unpredictable access latencies in the critical path. While lack of data locality may be a minor nuisance on systems with fewer than 4 processors, it becomes a serious scalability limitation on larger systems due to accesses to centralized data structures. In this paper, we propose ATraPos. a storage manager design that is aware of the non-uniform access latencies of multisocket systems. ATraPos achieves good data locality by carefully partitioning the data as well as internal data structures (e.g., state information) to the available processors and by assigning threads to specific partitions. Furthermore, ATraPos dynamically adapts to the workload characteristics, i.e., when the workload changes, ATraPos detects the change and automatically revises the data partitioning and thread placement to fit the current access patterns and hardware topology. We prototype ATraPos on top of an open-source storage manager Shore-MT and we present a detailed experimental analysis with both synthetic and standard (TPC-C and TATP) benchmarks. We show that ATraPos exhibits performance improvements of a factor ranging from 1.4 to 6.7x for a wide collection of transactional workloads. In addition, we show that the adaptive monitoring and partitioning scheme of ATraPos poses a negligible cost, while it allows the system to dynamically and gracefully adapt when the workload changes

    Applying HTM to an OLTP System: No Free Lunch

    Get PDF
    Transactional memory is a promising way for implementing efficient synchronization mechanisms for multicore processors. Intel's introduction of hardware transactional memory (HTM) into their Haswell line of processors marks an important step toward mainstream availability of transactional memory. Transaction processing systems require execution of dozens of critical sections to insure isolation among threads, which makes them one of the target applications for exploiting HTM. In this study, we quantify the opportunities and limitations of directly applying HTM to an existing OLTP system that uses fine-grained synchronization. Our target is Shore-MT, a modern multithreaded transactional storage manager that uses a variety of fine-grained synchronization mechanisms to provide scalability on multicore processors. We find that HTM can improve performance of the TATP workload by 13-17% when applied judiciously. However, attempting to replace all synchronization reduces performance compared to the baseline case due to high percentage of aborts caused by the limitations of the current HTM implementation. Copyright 2015 ACM

    How to Stop Under-Utilization and Love Multicores

    Get PDF
    Designing scalable transaction processing systems on modern hardware has been a challenge for almost a decade. Hardware trends oblige software to overcome three major challenges against systems scalability: (1) Exploiting the abundant thread-level parallelism provided by multicores, (2) Achieving predictively efficient execution despite the variability in communication latencies among cores on multisocket multicores, and (3) Taking advantage of the aggressive micro-architectural features. In this tutorial, we shed light on the above three challenges and survey recent proposals to alleviate them. First, we present a systematic way of eliminating scalability bottlenecks based on minimizing unbounded communication and show several techniques that apply the presented methodology to minimize bottlenecks in major components of transaction processing systems. Then, we analyze the problems that arise from the non-uniform nature of communication latencies on modern multisockets and ways to address them for systems that already scale well on multicores. Finally, we examine the sources of under-utilization within a modern processor and present insights and techniques to better exploit the micro-architectural resources of a processor by improving cache locality at the right level

    Characterization of the Impact of Hardware Islands on OLTP

    Get PDF
    Modern hardware is abundantly parallel and increasingly heterogeneous. The numerous processing cores have non-uniform access latencies to the main memory and processor caches, which causes variability in the communication costs. Unfortunately, database systems mostly assume that all processing cores are the same and that microarchitecture differences are not significant enough to appear in critical database execution paths. As we demonstrate in this paper, however, non-uniform core topology does appear in the critical path and conventional database architectures achieve suboptimal and even worse, unpredictable performance. We perform a detailed performance analysis of OLTP deployments in servers with multiple cores per CPU (multicore) and multiple CPUs per server (multisocket). We compare different database deployment strategies where we vary the number and size of independent database instances running on a single server, from a single shared-everything instance to fine-grained shared-nothing configurations. We quantify the impact of non-uniform hardware on various deployments by (a) examining how efficiently each deployment uses the available hardware resources and (b) measuring the impact of distributed transactions and skewed requests on different workloads. We show that no strategy is optimal for all cases and that the best choice depends on the combination of hardware topology and workload characteristics. Finally, we argue that transaction processing systems must be aware of the hardware topology in order to achieve predictably high performance

    The Case For Heterogeneous HTAP

    Get PDF
    ABSTRACT Modern database engines balance the demanding requirements of mixed, hybrid transactional and analytical processing (HTAP) workloads by relying on i) global shared memory, ii) system-wide cache coherence, and iii) massive parallelism. Thus, database engines are typically deployed on multi-socket multi-cores, which have been the only platform to support all three aspects. Two recent trends, however, indicate that these hardware assumptions will be invalidated in the near future. First, hardware vendors have started exploring alternate non-cache-coherent shared-memory multi-core designs due to escalating complexity in maintaining coherence across hundreds of cores. Second, as GPGPUs overcome programmability, performance, and interfacing limitations, they are being increasingly adopted by emerging servers to expose heterogeneous parallelism. It is thus necessary to revisit database engine design because current engines can neither deal with the lack of cache coherence nor exploit heterogeneous parallelism. In this paper, we make the case for Heterogeneous-HTAP (H 2 TAP), a new architecture explicitly targeted at emerging hardware. H 2 TAP engines store data in shared memory to maximize data freshness, pair workloads with ideal processor types to exploit heterogeneity, and use message passing with explicit processor cache management to circumvent the lack of cache coherence. Using Caldera, a prototype H 2 TAP engine, we show that the H 2 TAP architecture can be realized in practice and can offer performance competitive with specialized OLTP and OLAP engines
    corecore