4 research outputs found
Content of Cadmium and Nickel in Soils and Assimilatory Organs of Park Woody Species Exposed to Polluted Air
The rising level of pollutant emissions is becoming one of the most pressing environmental problems of our time. Therefore, this work is focused on evaluating Cd and Ni contamination of soils and assimilatory organs of two native (Acer platanoides L., Taxus baccata L.) and two non-native (Negundo aceroides Moench, Thuja occidentalis L.) woody species in urban parks of SW Slovakia. The contents of Cd and Ni in soils were determined by the AAS method and, in the assimilatory organs of trees, by the AAS-ETA method. The studied soils (Fluvisol, Phaeozem) have neutral soil reactions and a moderate organic matter content. Cadmium soil contamination is considerable to very high; in the case of Ni, it is moderate to low. Cadmium levels detected in leaves were 31% higher than in needles, while Ni levels were 27% lower. Significant ecological factors in relation to the studied woody species were evaluated using PCA. The first three principal components of PCA significantly correlated with Cd (PC1) and Ni (PC3) contents in soils and Cd content in assimilatory organs (PC2), thus suggesting that these elements could especially originate from industrial and vehicular sources. Knowledge of the factors affecting the accumulation of risk elements in the assimilatory organs of park woody species can be successfully used, especially in the assessment of the quality of the urban environment and the selection of suitable cultivars for planting in areas with air pollution
Energy Stored in Above-Ground Biomass Fractions and Model Trees of the Main Coniferous Woody Plants
The paper considers energy stored in above-ground biomass fractions and in model trees of the main coniferous woody plants (Picea abies (L.) H. Karst., Abies alba Mill., Pinus sylvestris (L.), Larix decidua Mill.), sampled in 22 forest stands selected in different parts of Slovakia. A total of 43 trees were felled, of which there were 12 spruces, 11 firs, 10 pines, and 10 larches. Gross and net calorific values were determined in samples of wood, bark, small-wood, twigs, and needles. Our results show that these values significantly depend on the tree species, biomass fractions, and sampling point on the tree. The energy stored in the model trees calculated on the basis of volume production taken from yield tables increases as follows: spruce < fir < pine < larch. Combustion of tree biomass releases an aliquot amount of a greenhouse gas—CO2, as well as an important plant nutrient, nitrogen—into the atmosphere. The obtained data must be taken into account in the case of the economic utilization of energy stored in the fractions of above-ground tree biomass and in whole trees. The achieved data can be used to assess forest ecosystems in terms of the flow of solar energy, its accumulation in the various components of tree biomass, and the risk of biomass combustion in relation to the release of greenhouse gases
Energy Stored in Above-Ground Biomass Fractions and Model Trees of the Main Coniferous Woody Plants
The paper considers energy stored in above-ground biomass fractions and in model trees of the main coniferous woody plants (Picea abies (L.) H. Karst., Abies alba Mill., Pinus sylvestris (L.), Larix decidua Mill.), sampled in 22 forest stands selected in different parts of Slovakia. A total of 43 trees were felled, of which there were 12 spruces, 11 firs, 10 pines, and 10 larches. Gross and net calorific values were determined in samples of wood, bark, small-wood, twigs, and needles. Our results show that these values significantly depend on the tree species, biomass fractions, and sampling point on the tree. The energy stored in the model trees calculated on the basis of volume production taken from yield tables increases as follows: spruce 2, as well as an important plant nutrient, nitrogen—into the atmosphere. The obtained data must be taken into account in the case of the economic utilization of energy stored in the fractions of above-ground tree biomass and in whole trees. The achieved data can be used to assess forest ecosystems in terms of the flow of solar energy, its accumulation in the various components of tree biomass, and the risk of biomass combustion in relation to the release of greenhouse gases