13 research outputs found

    Multi-objective optimal dispatching of virtual power plants considering source-load uncertainty in V2G mode

    Get PDF
    To solve the risks brought by the uncertainty of renewable energy output and load demand to the virtual power plant dispatch, a multi-objective information gap decision theory (IGDT) dispatching model for virtual power plants considering source-load uncertainty under vehicle-to-grid (V2G) is proposed. With the lowest system operating cost and carbon emission as the optimization objectives, the multi-objective robust optimization model for virtual power plants is constructed based on the uncertainties of wind output, photovoltaic output and load demand guided by the time of use price. The weights of uncertainties quantify the effects of uncertainty factors. The adaptive reference vector based constrained multi-objective evolutionary algorithm is used to solve it. The weight coefficients, evasion coefficients of uncertainties and the penetration rate of electric vehicles are analyzed for the optimal dispatching of the virtual power plant. The algorithm results show that the method can effectively achieve load-side peak shaving and valley filling and has superiority in terms of economy, environmental benefits, robustness and stability

    Regional cerebral metabolic levels and turnover in awake rats after acute or chronic spinal cord injury

    Get PDF
    Spinal cord injury (SCI) is a common cause of disability, which often leads to sensorimotor cortex dysfunction above the spinal injury site. However, the cerebral regional effects on metabolic information after SCI have been little studied. Here, adult Sprague-Dawley rats were divided into acute and chronic treatment groups and sham groups with day-matched periods. The Basso, Beatte, and Bresnahan scores method were utilized to evaluate the changes in behaviors during the recovery of the animals, and the metabolic information was measured with the 1 H-observed/13 C-edited NMR method. Total metabolic concentrations in every region were almost similar in both treated groups. However, the metabolic kinetics in most regions in the acute group were significantly altered (P < .05), particularly in the cortical area, thalamus and medulla (P < .01). After long-term recovery, some metabolic kinetics were recovered, especially in the temporal cortex, occipital cortex, and medulla. The metabolic kinetic changes revealed the alteration of metabolism and neurotransmission in different brain regions after SCI, which present evidence for the alternation of brain glucose oxidation. Therefore, this shows the significant influence of SCI on cerebral function and neuroscience research. This study also provides the theoretical basis for clinical therapy after SCI, such as mitochondrial transplantation. Keywords: NMR; brain regions; metabolic kinetics; neurotransmitters; spinal cord injury

    Rabies virus pseudotyped with CVS-N2C glycoprotein as a powerful tool for retrograde neuronal network tracing

    Get PDF
    Abstract Background: Efficient viral vectors for mapping and manipulating long projection neuronal circuits are crucial in brain structural and functional studies. The glycoprotein gene-deleted SAD strain rabies virus pseudotyped with the N2C glycoprotein (SAD-RV(ΔG)-N2C(G)) shows high neuro-tropism in cell culture, but its in vivo retrograde infection efficiency and neuro-tropism have not been systematically characterized. Methods: SAD-RV(ΔG)-N2C(G) and two other broadly used retrograde tracers, SAD-RV(ΔG)-B19(G) and rAAV2-retro were respectively injected into the VTA or DG in C57BL/6 mice. The neuron numbers labeled across the whole brain regions were counted and analyzed by measuring the retrograde infection efficiencies and tropisms of these viral tools. The labeled neural types were analyzed using fluorescence immunohistochemistry or GAD67-GFP mice. Result: We found that SAD-RV (ΔG)-N2C (G) enhanced the infection efficiency of long-projecting neurons by ~ 10 times but with very similar neuro-tropism, compared with SAD-RV (ΔG)-B19(G). On the other hand, SAD-RV(ΔG)-N2C(G) showed comparable infection efficiency with rAAV2-retro, but had a more restricted diffusion range, and broader tropism to different types and regions of long-projecting neuronal populations. Conclusions: These results demonstrate that SAD-RV(ΔG)-N2C(G) can serve as an effective retrograde vector for studying neuronal circuits. Key words:Viral vector, N2C Glycoprotein, Neuronal circuits, Retrograde tracin

    Heteroepitaxy of N-polar AlN on C-face 4H-SiC: Structural and optical properties

    No full text
    To date, it has remained challenging to achieve N-polar AlN, which is of great importance for high power, high frequency, and high temperature electronics, acoustic resonators and filters, ultraviolet (UV) optoelectronics, and integrated photonics. Here, we performed a detailed study of the molecular beam epitaxy and characterization of N-polar AlN on C-face 4H-SiC substrates. The N-polar AlN films grown under optimized conditions exhibit an atomically smooth surface and strong excitonic emission in the deep UV with luminescence efficiency exceeding 50% at room temperature. Detailed scanning transmission electron microscopy (STEM) studies suggest that most dislocations are terminated/annihilated within ∼200 nm AlN grown directly on the SiC substrate due to the relatively small (1%) lattice mismatch between AlN and SiC. The strain distribution of AlN is further analyzed by STEM and micro-Raman spectroscopy, and its impact on the temperature-dependent deep UV emission is elucidated

    BLA DBS improves anxiety and fear by correcting weakened synaptic transmission from BLA to adBNST and CeL in a mouse model of foot shock

    No full text
    Summary: Deep brain stimulation (DBS) in the basal lateral amygdala (BLA) has been established to correct symptoms of refractory post-traumatic stress disorder (PTSD). However, how BLA DBS operates in correcting PTSD symptoms and how the BLA elicits pathological fear and anxiety in PTSD remain unclear. Here, we discover that excitatory synaptic transmission from the BLA projection neurons (PNs) to the adBNST, and lateral central amygdala (CeL) is greatly suppressed in a mouse PTSD model induced by foot shock (FS). BLA DBS revises the weakened inputs from the BLA to these two areas to improve fear and anxiety. Optogenetic manipulation of the BLA-adBNST and BLA-CeL circuits shows that both circuits are responsible for anxiety but the BLA-CeL for fear in FS mice. Our results reveal that synaptic transmission dysregulation of the BLA-adBNST or BLA-CeL circuits is reversed by BLA DBS, which improves anxiety and fear in the FS mouse model

    Highly Uniform, Self- Assembled AlGaN Nanowires for Self- Powered Solar- Blind Photodetector with Fast- Response Speed and High Responsivity

    Full text link
    Searching for power- independent, compact, and highly environment- sensitive photodetectors is a critical step towards the realization of next- generation energy- efficient and sustainable integrated optoelectronic systems. Particularly, the deep ultraviolet (UV) band, which has large photon energy, is extremely suitable for environment monitoring and invisible light communication application. Herein, the demonstration of self- powered deep UV solar- blind photodetectors in a photoelectrochemical (PEC) cell configuration is reported, adopting wide bandgap n- type aluminum gallium nitride (AlGaN) nanowires as photoelectrode. After decorating nanowires with noble metal ruthenium (Ru), the constructed solar- blind PEC photodetectors exhibited excellent responsivity of 48.8 mA W- 1, fast response speed (rise time of 83 ms and decay time of 19 ms) with large photocurrent density of 55 μA cm- 2 at 254 nm illumination. Such superior performance can be attributed to, firstly and foremost, the successful synthesis of highly uniform and defect- free n- type AlGaN nanowires which ensures efficient photogeneration via effective light- harvesting, and secondly, the boosted carrier separation and collection efficiency through Ru decoration. This novel nanoarchitecture enables deep UV photodetection to work stably with low energy consumption, intriguingly, opening the possibility for the development of high- performance PEC photodetectors based on group III- nitride semiconductors covering the entire spectral range from infrared to deep UV.Highly uniform, self- assembled n- type aluminum gallium nitride (AlGaN) nanowires fabricated as self- powered solar- blind photoelectrochemical photodetector with fast- response speed and high responsivity are demonstrated. Owing to the defect- free wide bandgap AlGaN- based nanowires with appropriate surface decoration, the high- performance solar- blind photodetection is realized. The proposed novel device architecture unveils an unprecedented opportunity for designing future energy- efficient and sustainable optoelectronic systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166366/1/adom202000893.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/166366/2/adom202000893_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/166366/3/adom202000893-sup-0001-SuppMat.pd

    Observation of polarity-switchable photoconductivity in III-nitride/MoSx core-shell nanowires

    No full text
    A novel polarity-switchable photoelectrochemical photodetector based on III-nitride/MoSxcore-shell nanowires is constructed. Such unique device architecture provides a new route for multiple-band spectrally distinctive photodetection
    corecore