6 research outputs found

    An Architecture for Improved Surface Code Connectivity in Neutral Atoms

    Full text link
    In order to achieve error rates necessary for advantageous quantum algorithms, Quantum Error Correction (QEC) will need to be employed, improving logical qubit fidelity beyond what can be achieved physically. As today's devices begin to scale, co-designing architectures for QEC with the underlying hardware will be necessary to reduce the daunting overheads and accelerate the realization of practical quantum computing. In this work, we focus on logical computation in QEC. We address quantum computers made from neutral atom arrays to design a surface code architecture that translates the hardware's higher physical connectivity into a higher logical connectivity. We propose groups of interleaved logical qubits, gaining all-to-all connectivity within the group via efficient transversal CNOT gates. Compared to standard lattice surgery operations, this reduces both the overall qubit footprint and execution time, lowering the spacetime overhead needed for small-scale QEC circuits. We also explore the architecture's scalability. We look at using physical atom movement schemes and propose interleaved lattice surgery which allows an all-to-all connectivity between qubits in adjacent interleaved groups, creating a higher connectivity routing space for large-scale circuits. Using numerical simulations, we evaluate the total routing time of interleaved lattice surgery and atom movement for various circuit sizes. We identify a cross-over point defining intermediate-scale circuits where atom movement is best and large-scale circuits where interleaved lattice surgery is best. We use this to motivate a hybrid approach as devices continue to scale, with the choice of operation depending on the routing distance

    QContext: Context-Aware Decomposition for Quantum Gates

    Full text link
    In this paper we propose QContext, a new compiler structure that incorporates context-aware and topology-aware decompositions. Because of circuit equivalence rules and resynthesis, variants of a gate-decomposition template may exist. QContext exploits the circuit information and the hardware topology to select the gate variant that increases circuit optimization opportunities. We study the basis-gate-level context-aware decomposition for Toffoli gates and the native-gate-level context-aware decomposition for CNOT gates. Our experiments show that QContext reduces the number of gates as compared with the state-of-the-art approach, Orchestrated Trios.Comment: 10 page

    VarSaw: Application-tailored Measurement Error Mitigation for Variational Quantum Algorithms

    Full text link
    For potential quantum advantage, Variational Quantum Algorithms (VQAs) need high accuracy beyond the capability of today's NISQ devices, and thus will benefit from error mitigation. In this work we are interested in mitigating measurement errors which occur during qubit measurements after circuit execution and tend to be the most error-prone operations, especially detrimental to VQAs. Prior work, JigSaw, has shown that measuring only small subsets of circuit qubits at a time and collecting results across all such subset circuits can reduce measurement errors. Then, running the entire (global) original circuit and extracting the qubit-qubit measurement correlations can be used in conjunction with the subsets to construct a high-fidelity output distribution of the original circuit. Unfortunately, the execution cost of JigSaw scales polynomially in the number of qubits in the circuit, and when compounded by the number of circuits and iterations in VQAs, the resulting execution cost quickly turns insurmountable. To combat this, we propose VarSaw, which improves JigSaw in an application-tailored manner, by identifying considerable redundancy in the JigSaw approach for VQAs: spatial redundancy across subsets from different VQA circuits and temporal redundancy across globals from different VQA iterations. VarSaw then eliminates these forms of redundancy by commuting the subset circuits and selectively executing the global circuits, reducing computational cost (in terms of the number of circuits executed) over naive JigSaw for VQA by 25x on average and up to 1000x, for the same VQA accuracy. Further, it can recover, on average, 45% of the infidelity from measurement errors in the noisy VQA baseline. Finally, it improves fidelity by 55%, on average, over JigSaw for a fixed computational budget. VarSaw can be accessed here: https://github.com/siddharthdangwal/VarSaw.Comment: Appears at the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS) 2024. First two authors contributed equall

    Clifford Assisted Optimal Pass Selection for Quantum Transpilation

    Full text link
    The fidelity of quantum programs in the NISQ era is limited by high levels of device noise. To increase the fidelity of quantum programs running on NISQ devices, a variety of optimizations have been proposed. These include mapping passes, routing passes, scheduling methods and standalone optimisations which are usually incorporated into a transpiler as passes. Popular transpilers such as those proposed by Qiskit, Cirq and Cambridge Quantum Computing make use of these extensively. However, choosing the right set of transpiler passes and the right configuration for each pass is a challenging problem. Transpilers often make critical decisions using heuristics since the ideal choices are impossible to identify without knowing the target application outcome. Further, the transpiler also makes simplifying assumptions about device noise that often do not hold in the real world. As a result, we often see effects where the fidelity of a target application decreases despite using state-of-the-art optimisations. To overcome this challenge, we propose OPTRAN, a framework for Choosing an Optimal Pass Set for Quantum Transpilation. OPTRAN uses classically simulable quantum circuits composed entirely of Clifford gates, that resemble the target application, to estimate how different passes interact with each other in the context of the target application. OPTRAN then uses this information to choose the optimal combination of passes that maximizes the target application's fidelity when run on the actual device. Our experiments on IBM machines show that OPTRAN improves fidelity by 87.66% of the maximum possible limit over the baseline used by IBM Qiskit. We also propose low-cost variants of OPTRAN, called OPTRAN-E-3 and OPTRAN-E-1 that improve fidelity by 78.33% and 76.66% of the maximum permissible limit over the baseline at a 58.33% and 69.44% reduction in cost compared to OPTRAN respectively
    corecore