24 research outputs found

    D121 Located within the DRY Motif of P2Y12 Is Essential for P2Y12-Mediated Platelet Function.

    Get PDF
    Platelets are anucleate cells that mediate hemostasis. This occurs via a primary signal that is reinforced by secreted products such as ADP that bind purinergic receptors (P2Y1 and P2Y12) on the platelet surface. We recently identified a human subject, whom we termed platelet defect subject 25 (PDS25) with a platelet functional disorder associated with the P2Y12 receptor. PDS25 has normal blood cell counts and no history of bleeding diathesis. However, platelets from PDS25 have virtually no response to 2-MeSADP (a stable analogue of ADP). Genetic analysis of P2Y12 from PDS25 revealed a heterozygous mutation of D121N within the DRY motif. Rap1b activity was reduced in platelets from PDS25, while VASP phosphorylation was enhanced, suggesting that signaling from the P2Y12 receptor was interrupted by the heterozygous mutation. To explore this further, we produced knock-in mice that mimic our subject. Bleeding failed to cease in homozygous KI mice during tail bleeding assays, while tail bleeding times did not differ between WT and heterozygous KI mice. Furthermore, occlusions failed to form in most homozygous KI mice following carotid artery injury via FeCl3. These data indicate that the aspartic acid residue found in the DRY motif of P2Y12 is essential for P2Y12 function

    Protease-activated receptor 4 causes Akt phosphorylation independently of PI3 kinase pathways

    No full text
    PI-3 Kinase plays an important role in platelet activation mainly through regulation of RASA3. Akt phosphorylation is an indicator for the activity of PI3 kinase. The aim of this study is to characterize the pathways leading to Akt phosphorylation in platelets. We performed concentration response curves of LY294002, a pan-PI3 kinase inhibitor, on platelet aggregation and Akt phosphorylation, in washed human and mouse platelets. At concentrations as low as 3.12 µM, LY294002 abolished Akt phosphorylation induced by 2MeSADP and SFLLRN, but not by AYPGKF. It required much higher concentrations of LY294002 (12.5–25 µM) to abolish AYPGKF-induced Akt phosphorylation, both in wild type and P2Y12 null mouse platelets. We propose that 3.12 µM LY294002 is sufficient to inhibit PI3 kinase isoforms in platelets and higher concentrations might inhibit other pathways regulating Akt phosphorylation by AYPGKF. We conclude that Protease-activated receptor 4 (PAR4) might cause Akt phosphorylation through pathways distinctly different from those of Protease-activated receptor 1 (PAR1)

    Evidence for a PI3-kinase independent pathway in the regulation of Rap1b activation downstream of the P2Y12 receptor in platelets

    No full text
    Platelet activation by adenosine diphosphate (ADP) is mediated through two G-protein-coupled receptors, P2Y1 and P2Y12, which signal through Gq and Gi, respectively. P2Y1 stimulation leads to phospholipase C activation and an increase in cytosolic calcium necessary for CalDAG-GEF1 activation. Engagement of P2Y12 inhibits adenylate cyclase, which reduces cAMP, and activation of PI3-kinase, which inhibits RASA3 resulting in sustained activated Rap1b. In this study we activated human platelets with 2-MeSADP in the presence of LY294002, a PI3-kinase inhibitor, AR-C69931MX, a P2Y12 antagonist or MRS2179, a P2Y1 antagonist. We measured the phosphorylation of Akt on Ser473 as an indicator of PI3-kinase activity. As previously shown, LY294002 and ARC69931MX abolished 2MeSADP-induced Akt phosphorylation. MRS2179 reduced ADP-induced Akt phosphorylation but did not abolish it. Rap1b activation, however, was only reduced, but not ablated, using LY294002 and was completely inhibited by ARC69931MX or MRS2179. Furthermore, 2MeSADP-induced Rap1b activation was abolished in either P2Y1 or P2Y12 null platelets. These data suggest that ADP-induced Rap1b activation requires both P2Y1 and P2Y12. In addition, although stimulation of P2Y12 results in PI3-kinase activation leading to Akt phosphorylation and Rap1b activation, Rap1b activation can occur independently of PI3-kinase downstream of P2Y12. Thus, we propose that the P2Y12 receptor can regulate Rap1b, possibly through RASA3, in a pathway independent of PI3-kinase

    D121 Located within the DRY Motif of P2Y12 Is Essential for P2Y12-Mediated Platelet Function

    No full text
    Platelets are anucleate cells that mediate hemostasis. This occurs via a primary signal that is reinforced by secreted products such as ADP that bind purinergic receptors (P2Y1 and P2Y12) on the platelet surface. We recently identified a human subject, whom we termed platelet defect subject 25 (PDS25) with a platelet functional disorder associated with the P2Y12 receptor. PDS25 has normal blood cell counts and no history of bleeding diathesis. However, platelets from PDS25 have virtually no response to 2-MeSADP (a stable analogue of ADP). Genetic analysis of P2Y12 from PDS25 revealed a heterozygous mutation of D121N within the DRY motif. Rap1b activity was reduced in platelets from PDS25, while VASP phosphorylation was enhanced, suggesting that signaling from the P2Y12 receptor was interrupted by the heterozygous mutation. To explore this further, we produced knock-in mice that mimic our subject. Bleeding failed to cease in homozygous KI mice during tail bleeding assays, while tail bleeding times did not differ between WT and heterozygous KI mice. Furthermore, occlusions failed to form in most homozygous KI mice following carotid artery injury via FeCl3. These data indicate that the aspartic acid residue found in the DRY motif of P2Y12 is essential for P2Y12 function

    Biochemical characterization of spleen tyrosine kinase (SYK) isoforms in platelets

    No full text
    Alternate splicing is among the regulatory mechanisms imparting functional diversity in proteins. Studying protein isoforms generated through alternative splicing is therefore critical for understanding protein functions in many biological systems. Spleen tyrosine kinase (Syk) plays an essential role in ITAM/hemITAM signaling in many cell types, including platelets. However, the spectrum of Syk isoforms expressed in platelets has not been characterized. Syk has been shown to have a full-length long isoform SykL and a shorter SykS lacking 23 amino acid residues within its interdomain B. Furthermore, putative isoforms lacking another 23 amino acid-long sequence or a combination of the two deletions have been postulated to exist. In this report, we demonstrate that mouse platelets express full-length SykL and the previously described shorter isoform SykS, but lack other shorter isoforms, whereas human platelets express predominantly SykL. These results both indicate a possible role of alternative Syk splicing in the regulation of receptor signaling in mouse platelets and a difference between signaling regulation in mouse and human platelets

    Protein kinase C- and calcium-regulated pathways independently synergize with Gi pathways in agonist-induced fibrinogen receptor activation.

    No full text
    Platelet fibrinogen receptor activation is a critical step in platelet plug formation. The fibrinogen receptor (integrin alphaIIbbeta3) is activated by agonist-mediated G(q) stimulation and resultant phospholipase C activation. We investigated the role of downstream signalling events from phospholipase C, namely the activation of protein kinase C (PKC) and rise in intracellular calcium, in agonist-induced fibrinogen receptor activation using Ro 31-8220 (a PKC inhibitor) or dimethyl BAPTA [5,5'-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N', N'-tetra-acetic acid], a high-affinity calcium chelator. All the experiments were performed with human platelets treated with aspirin, to avoid positive feedback from thromboxane A2. In the presence of Ro 31-8220, platelet aggregation caused by U46619 was completely inhibited while no effect or partial inhibition was seen with ADP and the thrombin-receptor-activating peptide SFLLRN, respectively. In the presence of intracellular dimethyl BAPTA, ADP- and U46619-induced aggregation and anti-alphaIIbbeta3 antibody PAC-1 binding were completely abolished. However, similar to the effects of Ro 31-8220, dimethyl BAPTA only partially inhibited SFLLRN-induced aggregation, and was accompanied by diminished dense-granule secretion. When either PKC activation or intracellular calcium release was abrogated, aggregation and fibrinogen receptor activation with U46619 or SFLLRN was partially restored by additional selective activation of the G(i) signalling pathway. In contrast, when both PKC activity and intracellular calcium increase were simultaneously inhibited, the complete inhibition of aggregation that occurred in response to either U46619 or SFLLRN could not be restored with concomitant G(i) signalling. We conclude that, while the PKC- and calcium-regulated signalling pathways are capable of inducing activating fibrinogen receptor independently and that each can synergize with G(i) signalling to cause irreversible fibrinogen receptor activation, both pathways act synergistically to effect irreversible fibrinogen receptor activation
    corecore