11,400 research outputs found

    Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization

    Full text link
    In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significantly reduce the cost per iteration of the latter algorithm. We establish the rate of convergence of the SBMD method along with its associated large-deviation results for solving general nonsmooth and stochastic optimization problems. We also introduce different variants of this method and establish their rate of convergence for solving strongly convex, smooth, and composite optimization problems, as well as certain nonconvex optimization problems. To the best of our knowledge, all these developments related to the SBMD methods are new in the stochastic optimization literature. Moreover, some of our results also seem to be new for block coordinate descent methods for deterministic optimization

    Linearly Convergent First-Order Algorithms for Semi-definite Programming

    Full text link
    In this paper, we consider two formulations for Linear Matrix Inequalities (LMIs) under Slater type constraint qualification assumption, namely, SDP smooth and non-smooth formulations. We also propose two first-order linearly convergent algorithms for solving these formulations. Moreover, we introduce a bundle-level method which converges linearly uniformly for both smooth and non-smooth problems and does not require any smoothness information. The convergence properties of these algorithms are also discussed. Finally, we consider a special case of LMIs, linear system of inequalities, and show that a linearly convergent algorithm can be obtained under a weaker assumption

    Pairing effect on the giant dipole resonance width at low temperature

    Full text link
    The width of the giant dipole resonance (GDR) at finite temperature T in Sn-120 is calculated within the Phonon Damping Model including the neutron thermal pairing gap determined from the modified BCS theory. It is shown that the effect of thermal pairing causes a smaller GDR width at T below 2 MeV as compared to the one obtained neglecting pairing. This improves significantly the agreement between theory and experiment including the most recent data point at T = 1 MeV.Comment: 8 pages, 5 figures to be published in Physical Review

    Galois Unitaries, Mutually Unbiased Bases, and MUB-balanced states

    Full text link
    A Galois unitary is a generalization of the notion of anti-unitary operators. They act only on those vectors in Hilbert space whose entries belong to some chosen number field. For Mutually Unbiased Bases the relevant number field is a cyclotomic field. By including Galois unitaries we are able to remove a mismatch between the finite projective group acting on the bases on the one hand, and the set of those permutations of the bases that can be implemented as transformations in Hilbert space on the other hand. In particular we show that there exist transformations that cycle through all the bases in every dimension which is an odd power of an odd prime. (For even primes unitary MUB-cyclers exist.) These transformations have eigenvectors, which are MUB-balanced states (i.e. rotationally symmetric states in the original terminology of Wootters and Sussman) if and only if d = 3 modulo 4. We conjecture that this construction yields all such states in odd prime power dimension.Comment: 32 pages, 2 figures, AMS Latex. Version 2: minor improvements plus a few additional reference

    Improved Two-Dimensional Kinetics (TDK) computer program

    Get PDF
    Fluid properties, the boundary layer module, and regenerative cooling are discussed. Chemistry, low density flow effects, test cases, input and output for TDK, and documentation are also discussed
    • …
    corecore