11,400 research outputs found
Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization
In this paper, we present a new stochastic algorithm, namely the stochastic
block mirror descent (SBMD) method for solving large-scale nonsmooth and
stochastic optimization problems. The basic idea of this algorithm is to
incorporate the block-coordinate decomposition and an incremental block
averaging scheme into the classic (stochastic) mirror-descent method, in order
to significantly reduce the cost per iteration of the latter algorithm. We
establish the rate of convergence of the SBMD method along with its associated
large-deviation results for solving general nonsmooth and stochastic
optimization problems. We also introduce different variants of this method and
establish their rate of convergence for solving strongly convex, smooth, and
composite optimization problems, as well as certain nonconvex optimization
problems. To the best of our knowledge, all these developments related to the
SBMD methods are new in the stochastic optimization literature. Moreover, some
of our results also seem to be new for block coordinate descent methods for
deterministic optimization
Linearly Convergent First-Order Algorithms for Semi-definite Programming
In this paper, we consider two formulations for Linear Matrix Inequalities
(LMIs) under Slater type constraint qualification assumption, namely, SDP
smooth and non-smooth formulations. We also propose two first-order linearly
convergent algorithms for solving these formulations. Moreover, we introduce a
bundle-level method which converges linearly uniformly for both smooth and
non-smooth problems and does not require any smoothness information. The
convergence properties of these algorithms are also discussed. Finally, we
consider a special case of LMIs, linear system of inequalities, and show that a
linearly convergent algorithm can be obtained under a weaker assumption
Pairing effect on the giant dipole resonance width at low temperature
The width of the giant dipole resonance (GDR) at finite temperature T in
Sn-120 is calculated within the Phonon Damping Model including the neutron
thermal pairing gap determined from the modified BCS theory. It is shown that
the effect of thermal pairing causes a smaller GDR width at T below 2 MeV as
compared to the one obtained neglecting pairing. This improves significantly
the agreement between theory and experiment including the most recent data
point at T = 1 MeV.Comment: 8 pages, 5 figures to be published in Physical Review
Galois Unitaries, Mutually Unbiased Bases, and MUB-balanced states
A Galois unitary is a generalization of the notion of anti-unitary operators.
They act only on those vectors in Hilbert space whose entries belong to some
chosen number field. For Mutually Unbiased Bases the relevant number field is a
cyclotomic field. By including Galois unitaries we are able to remove a
mismatch between the finite projective group acting on the bases on the one
hand, and the set of those permutations of the bases that can be implemented as
transformations in Hilbert space on the other hand. In particular we show that
there exist transformations that cycle through all the bases in every dimension
which is an odd power of an odd prime. (For even primes unitary MUB-cyclers
exist.) These transformations have eigenvectors, which are MUB-balanced states
(i.e. rotationally symmetric states in the original terminology of Wootters and
Sussman) if and only if d = 3 modulo 4. We conjecture that this construction
yields all such states in odd prime power dimension.Comment: 32 pages, 2 figures, AMS Latex. Version 2: minor improvements plus a
few additional reference
Improved Two-Dimensional Kinetics (TDK) computer program
Fluid properties, the boundary layer module, and regenerative cooling are discussed. Chemistry, low density flow effects, test cases, input and output for TDK, and documentation are also discussed
- …