98 research outputs found

    Outage Performance of Two-Hop OFDM Systems with Spatially Random Decode-and-Forward Relays

    Full text link
    In this paper, we analyze the outage performance of different multicarrier relay selection schemes for two-hop orthogonal frequency-division multiplexing (OFDM) systems in a Poisson field of relays. In particular, special emphasis is placed on decode-and-forward (DF) relay systems, equipped with bulk and per-subcarrier selection schemes, respectively. The exact expressions for outage probability are derived in integrals for general cases. In addition, asymptotic expressions for outage probability in the high signal-to-noise ratio (SNR) region in the finite circle relay distribution region are determined in closed forms for both relay selection schemes. Also, the outage probabilities for free space in the infinite relay distribution region are derived in closed forms. Meanwhile, a series of important properties related to cooperative systems in random networks are investigated, including diversity, outage probability ratio of two selection schemes and optimization of the number of subcarriers in terms of system throughput. All analysis is numerically verified by simulations. Finally, a framework for analyzing the outage performance of OFDM systems with spatially random relays is constructed, which can be easily modified to analyze other similar cases with different forwarding protocols, location distributions and/or channel conditions

    Adaptive OFDM Index Modulation for Two-Hop Relay-Assisted Networks

    Full text link
    In this paper, we propose an adaptive orthogonal frequency-division multiplexing (OFDM) index modulation (IM) scheme for two-hop relay networks. In contrast to the traditional OFDM IM scheme with a deterministic and fixed mapping scheme, in this proposed adaptive OFDM IM scheme, the mapping schemes between a bit stream and indices of active subcarriers for the first and second hops are adaptively selected by a certain criterion. As a result, the active subcarriers for the same bit stream in the first and second hops can be varied in order to combat slow frequency-selective fading. In this way, the system reliability can be enhanced. Additionally, considering the fact that a relay device is normally a simple node, which may not always be able to perform mapping scheme selection due to limited processing capability, we also propose an alternative adaptive methodology in which the mapping scheme selection is only performed at the source and the relay will simply utilize the selected mapping scheme without changing it. The analyses of average outage probability, network capacity and symbol error rate (SER) are given in closed form for decode-and-forward (DF) relaying networks and are substantiated by numerical results generated by Monte Carlo simulations.Comment: 30 page

    Outage Performance Analysis of Multicarrier Relay Selection for Cooperative Networks

    Full text link
    In this paper, we analyze the outage performance of two multicarrier relay selection schemes, i.e. bulk and per-subcarrier selections, for two-hop orthogonal frequency-division multiplexing (OFDM) systems. To provide a comprehensive analysis, three forwarding protocols: decode-and-forward (DF), fixed-gain (FG) amplify-and-forward (AF) and variable-gain (VG) AF relay systems are considered. We obtain closed-form approximations for the outage probability and closed-form expressions for the asymptotic outage probability in the high signal-to-noise ratio (SNR) region for all cases. Our analysis is verified by Monte Carlo simulations, and provides an analytical framework for multicarrier systems with relay selection

    An Adaptive Compression and Communication Framework for Wireless Federated Learning

    Get PDF
    Federated learning (FL) is a distributed privacy-preserving paradigm of machine learning that enables efficient and secure model training through the collaboration of multiple clients. However, imperfect channel estimation and resource constraints of edge devices severely hinder the convergence of typical wireless FL, while the trade-off between communications and computation still lacks in-depth exploration. These factors lead to inefficient communications and hinder the full potential of FL from being unleashed. In this regard, we formulate a joint optimization problem of communications and learning in wireless networks subject to dynamic channel variations. For addressing the formulated problem, we propose an integrated adaptive nn -ary compression and resource management framework (ANC) that is capable of adjusting the selection of edge devices and compression schemes, and allocates the optimal resource blocks and transmit power to each participating device, which effectively improves the energy efficiency and scalability of FL in resource-constrained environments. Furthermore, an upper bound on the expected global convergence rate is derived in this paper to quantify the impacts of transmitted data volume and wireless propagation on the convergence of FL. Simulation results demonstrate that the proposed adaptive framework achieves much faster convergence while maintaining considerably low communication overhead

    Blended Laboratory Design Using Raspberry Pi Pico for Digital Circuits and Systems

    Get PDF
    Raspberry Pi Pico, based on chip RP2040, is an easy-to-use development microcontroller board that can provide flexible input/output functions and meets the teaching needs of basic electronics to first-year university undergraduates. This article presents our blended laboratory design using Raspberry Pi Pico for the course unit Digital Circuits and Systems. Considering the impacts of Coronavirus Disease 2019 (COVID-19) and the reduced number of students attending the in-person laboratory, we provide an alternative approach using an online Raspberry Pi Pico simulator produced by Wokwi for those students who cannot attend the physical laboratory. The entire laboratory is designed by design-based learning pedagogical methodology and consists of three dependent sessions. Throughout the three laboratory sessions, first-year undergraduates are expected to understand the basic digital logic and electronic circuits by building a simplified interactive traffic light controller system using Raspberry Pi Pico and Python programming. The intended learning outcomes, full details of the blended laboratory design, and the laboratory design evaluation results are given and discussed in this article to verify the effectiveness of the blended laboratory design using Raspberry Pi Pico. By analyzing the empirical data collected from laboratory participants, the effectiveness of the proposed blended laboratory design can be well supported, and all intended learning outcomes are successfully achieved subject to the impacts of COVID-19

    Green Holographic MIMO Communications With A Few Transmit Radio Frequency Chains

    Full text link
    Holographic multiple-input multiple-output (MIMO) communications are widely recognized as a promising candidate for the next-generation air interface. With holographic MIMO surface, the number of the spatial degrees-of-freedom (DoFs) considerably increases and also significantly varies as the user moves. To fully employ the large and varying number of spatial DoFs, the number of equipped RF chains has to be larger than or equal to the largest number of spatial DoFs. However, this causes much waste as radio frequency (RF) chains (especially the transmit RF chains) are costly and power-hungry. To avoid the heavy burden, this paper investigates green holographic MIMO communications with a few transmit RF chains under an electromagnetic-based communication model. We not only look at the fundamental capacity limits but also propose an effective transmission, namely non-uniform holographic pattern modulation (NUHPM), to achieve the capacity limit in the high signal-to-noise (SNR) regime. The analytical result sheds light on the green evaluation of MIMO communications, which can be realized by increasing the size of the antenna aperture without increasing the number of transmit RF chains. Numerical results are provided to verify our analysis and to show the great performance gain by employing the additional spatial DoFs as modulation resources.Comment: 10 figures; has been accepted by TGC
    • …
    corecore