152 research outputs found
Data Leak Detection As a Service: Challenges and Solutions
We describe a network-based data-leak detection (DLD)
technique, the main feature of which is that the detection
does not require the data owner to reveal the content of the
sensitive data. Instead, only a small amount of specialized
digests are needed. Our technique – referred to as the fuzzy
fingerprint – can be used to detect accidental data leaks due
to human errors or application flaws. The privacy-preserving
feature of our algorithms minimizes the exposure of sensitive
data and enables the data owner to safely delegate the
detection to others.We describe how cloud providers can offer
their customers data-leak detection as an add-on service
with strong privacy guarantees.
We perform extensive experimental evaluation on the privacy,
efficiency, accuracy and noise tolerance of our techniques.
Our evaluation results under various data-leak scenarios
and setups show that our method can support accurate
detection with very small number of false alarms, even
when the presentation of the data has been transformed. It
also indicates that the detection accuracy does not degrade
when partial digests are used. We further provide a quantifiable
method to measure the privacy guarantee offered by our
fuzzy fingerprint framework
Storytelling Security: User-Intention Based Traffic Sanitization
Malicious software (malware) with decentralized communication infrastructure, such as peer-to-peer botnets, is difficult to detect. In this paper, we describe a traffic-sanitization method for identifying malware-triggered outbound connections from a personal computer. Our solution correlates user activities with the content of outbound traffic. Our key observation is that user-initiated outbound traffic typically has corresponding human inputs, i.e., keystroke or mouse clicks. Our analysis on the causal relations between user inputs and packet payload enables the efficient enforcement of the inter-packet dependency at the application level.
We formalize our approach within the framework of protocol-state machine. We define new application-level traffic-sanitization policies that enforce the inter-packet dependencies. The dependency is derived from the transitions among protocol states that involve both user actions and network events. We refer to our methodology as storytelling security.
We demonstrate a concrete realization of our methodology in the context of peer-to-peer file-sharing application, describe its use in blocking traffic of P2P bots on a host. We implement and evaluate our prototype in Windows operating system in both online and offline deployment settings. Our experimental evaluation along with case studies of real-world P2P applications demonstrates the feasibility of verifying the inter-packet dependencies. Our deep packet inspection incurs overhead on the outbound network flow. Our solution can also be used as an offline collect-and-analyze tool
Identifying Native Applications with High Assurance
The work described in this paper investigates the problem
of identifying and deterring stealthy malicious processes on
a host. We point out the lack of strong application iden-
tication in main stream operating systems. We solve the
application identication problem by proposing a novel iden-
tication model in which user-level applications are required
to present identication proofs at run time to be authenti-
cated by the kernel using an embedded secret key. The se-
cret key of an application is registered with a trusted kernel
using a key registrar and is used to uniquely authenticate
and authorize the application. We present a protocol for
secure authentication of applications. Additionally, we de-
velop a system call monitoring architecture that uses our
model to verify the identity of applications when making
critical system calls. Our system call monitoring can be
integrated with existing policy specication frameworks to
enforce application-level access rights. We implement and
evaluate a prototype of our monitoring architecture in Linux
as device drivers with nearly no modication of the ker-
nel. The results from our extensive performance evaluation
shows that our prototype incurs low overhead, indicating the
feasibility of our model
Device-Based Isolation for Securing Cryptographic Keys
In this work, we describe an eective device-based isolation
approach for achieving data security. Device-based isolation
leverages the proliferation of personal computing devices to
provide strong run-time guarantees for the condentiality of
secrets. To demonstrate our isolation approach, we show its
use in protecting the secrecy of highly sensitive data that
is crucial to security operations, such as cryptographic keys
used for decrypting ciphertext or signing digital signatures.
Private key is usually encrypted when not used, however,
when being used, the plaintext key is loaded into the memory
of the host for access. In our threat model, the host may
be compromised by attackers, and thus the condentiality of
the host memory cannot be preserved. We present a novel
and practical solution and its prototype called DataGuard to
protect the secrecy of the highly sensitive data through the
storage isolation and secure tunneling enabled by a mobile
handheld device. DataGuard can be deployed for the key
protection of individuals or organizations
User-Behavior Based Detection of Infection Onset
A major vector of computer infection is through exploiting software or design flaws in networked applications such as the browser. Malicious code can be fetched and executed on a victim’s machine without the user’s permission, as in drive-by download (DBD) attacks. In this paper, we describe a new tool called DeWare for detecting the onset of infection delivered through vulnerable applications. DeWare explores and enforces causal relationships between computer-related human behaviors and system properties, such as file-system access and process execution. Our tool can be used to provide real time protection of a personal computer, as well as for diagnosing and evaluating untrusted websites for forensic purposes. Besides the concrete DBD detection solution, we also formally define causal relationships between user actions and system events on a host. Identifying and enforcing correct causal relationships have important applications in realizing advanced and secure operating systems. We perform extensive experimental evaluation, including a user study with 21 participants, thousands of legitimate websites (for testing false alarms), as well as 84 malicious websites in the wild. Our results show that DeWare is able to correctly distinguish legitimate download events from unauthorized system events with a low false positive rate (< 1%)
- …