494 research outputs found
Surface analysis of space telescope material specimens
Qualitative and quantitative data on Space Telescope materials which were exposed to low Earth orbital atomic oxygen in a controlled experiment during the 41-G (STS-17) mission were obtained utilizing the experimental techniques of Rutherford backscattering (RBS), particle induced X-ray emission (PIXE), and ellipsometry (ELL). The techniques employed were chosen with a view towards appropriateness for the sample in question, after consultation with NASA scientific personnel who provided the material specimens. A group of eight samples and their controls selected by NASA scientists were measured before and after flight. Information reported herein include specimen surface characterization by ellipsometry techniques, a determination of the thickness of the evaporated metal specimens by RBS, and a determination of trace impurity species present on and within the surface by PIXE
Clinical and parasitological response to oral chloroquine and primaquine in uncomplicated human Plasmodium knowlesi infections
Background: Plasmodium knowlesi is a cause of symptomatic and potentially fatal infections in humans. There are no studies assessing the detailed parasitological response to treatment of knowlesi malaria infections in man and whether antimalarial resistance occurs. Methods: A prospective observational study of oral chloroquine and primaquine therapy was conducted in consecutive patients admitted to Kapit Hospital, Sarawak, Malaysian Borneo with PCR-confirmed single P. knowlesi infections. These patients were given oral chloroquine for three days, and at 24 hours oral primaquine was administered for two consecutive days, primarily as a gametocidal agent. Clinical and parasitological responses were recorded at 6-hourly intervals during the first 24 hours, daily until discharge and then weekly to day 28. Vivax malaria patients were studied as a comparator group. Results: Of 96 knowlesi malaria patients who met the study criteria, 73 were recruited to an assessment of the acute response to treatment and 60 completed follow-up over 28 days. On admission, the mean parasite stage distributions were 49.5%, 41.5%, 4.0% and 5.6% for early trophozoites, late trophozoites, schizonts and gametocytes respectively. The median fever clearance time was 26.5 [inter-quartile range 16-34] hours. The mean times to 50% (PCT50) and 90% (PCT90) parasite clearance were 3.1 (95% confidence intervals [CI] 2.8-3.4) hours and 10.3 (9.4-11.4) hours. These were more rapid than in a group of 23 patients with vivax malaria 6.3 (5.3-7.8) hours and 20.9 (17.6-25.9) hours; P = 0.02). It was difficult to assess the effect of primaquine on P. knowlesi parasites, due to the rapid anti-malarial properties of chloroquine and since primaquine was administered 24 hours after chloroquine. No P. knowlesi recrudescences or re-infections were detected by PCR. Conclusions: Chloroquine plus primaqine is an inexpensive and highly effective treatment for uncomplicated knowlesi malaria infections in humans and there is no evidence of drug resistance. Further studies using alternative anti-malarial drugs, including artemisinin derivatives, would be desirable to define optimal management strategies for P. knowlesi.Publisher PDFPeer reviewe
Clinical and parasitological response to oral chloroquine and primaquine in uncomplicated human Plasmodium knowlesi infections
BACKGROUND: Plasmodium knowlesi is a cause of symptomatic and potentially fatal infections in humans. There are no studies assessing the detailed parasitological response to treatment of knowlesi malaria infections in man and whether antimalarial resistance occurs.
METHODS: A prospective observational study of oral chloroquine and primaquine therapy was conducted in consecutive patients admitted to Kapit Hospital, Sarawak, Malaysian Borneo with PCR-confirmed single P. knowlesi infections. These patients were given oral chloroquine for three days, and at 24 hours oral primaquine was administered for two consecutive days, primarily as a gametocidal agent. Clinical and parasitological responses were recorded at 6-hourly intervals during the first 24 hours, daily until discharge and then weekly to day 28. Vivax malaria patients were studied as a comparator group.
RESULTS: Of 96 knowlesi malaria patients who met the study criteria, 73 were recruited to an assessment of the acute response to treatment and 60 completed follow-up over 28 days. On admission, the mean parasite stage distributions were 49.5%, 41.5%, 4.0% and 5.6% for early trophozoites, late trophozoites, schizonts and gametocytes respectively. The median fever clearance time was 26.5 [inter-quartile range 16-34] hours. The mean times to 50% (PCT50) and 90% (PCT90) parasite clearance were 3.1 (95% confidence intervals [CI] 2.8-3.4) hours and 10.3 (9.4-11.4) hours. These were more rapid than in a group of 23 patients with vivax malaria 6.3 (5.3-7.8) hours and 20.9 (17.6-25.9) hours; P = 0.02). It was difficult to assess the effect of primaquine on P. knowlesi parasites, due to the rapid anti-malarial properties of chloroquine and since primaquine was administered 24 hours after chloroquine. No P. knowlesi recrudescences or re-infections were detected by PCR.
CONCLUSIONS: Chloroquine plus primaqine is an inexpensive and highly effective treatment for uncomplicated knowlesi malaria infections in humans and there is no evidence of drug resistance. Further studies using alternative anti-malarial drugs, including artemisinin derivatives, would be desirable to define optimal management strategies for P. knowlesi
Magnetoresistivity in a Tilted Magnetic Field in p-Si/SiGe/Si Heterostructures with an Anisotropic g-Factor: Part II
The magnetoresistance components and were measured in
two p-Si/SiGe/Si quantum wells that have an anisotropic g-factor in a tilted
magnetic field as a function of temperature, field and tilt angle. Activation
energy measurements demonstrate the existence of a ferromagnetic-paramagnetic
(F-P) transition for a sample with a hole density of
=2\,cm. This transition is due to crossing of the
0 and 1 Landau levels. However, in another sample, with
=7.2\,cm, the 0 and 1 Landau
levels coincide for angles =0-70. Only for >
70 do the levels start to diverge which, in turn, results in the
energy gap opening.Comment: 5 pages, 6 figure
Unusual conductance collapse in one-dimensional quantum structures
We report an unusual insulating state in one-dimensional quantum wires with a
non-uniform confinement potential. The wires consist of a series of closely
spaced split gates in high mobility GaAs/AlGaAs heterostructures. At certain
combinations of wire widths, the conductance abruptly drops over three orders
of magnitude, to zero on a linear scale. Two types of collapse are observed,
one occurring in multi-subband wires in zero magnetic field and one in single
subband wires in an in-plane field. The conductance of the wire in the collapse
region is thermally activated with an energy of the order of 1 K. At low
temperatures, the conductance shows a steep rise beyond a threshold DC
source-drain voltage of order 1 mV, indicative of a gap in the density of
states. Magnetic depopulation measurements show a decrease in the carrier
density with lowering temperature. We discuss these results in the context of
many-body effects such as charge density waves and Wigner crystallization in
quantum wires.Comment: 5 pages, 5 eps figures, revte
Spins, charges and currents at Domain Walls in a Quantum Hall Ising Ferromagnet
We study spin textures in a quantum Hall Ising ferromagnet. Domain walls
between ferro and unpolarized states at are analyzed with a functional
theory supported by a microscopic calculation. In a neutral wall, Hartree
repulsion prevents the appearance of a fan phase provoked by a negative
stiffness. For a charged system, electrons become trapped as solitons at the
domain wall. The size and energy of the solitons are determined by both Hartree
and spin-orbit interactions. Finally, we discuss how electrical transport takes
place through the domain wall.Comment: 4 pages, 3 figures include
Interaction Effects in a One-Dimensional Constriction
We have investigated the transport properties of one-dimensional (1D)
constrictions defined by split-gates in high quality GaAs/AlGaAs
heterostructures. In addition to the usual quantized conductance plateaus, the
equilibrium conductance shows a structure close to , and in
consolidating our previous work [K.~J. Thomas et al., Phys. Rev. Lett. 77, 135
(1996)] this 0.7 structure has been investigated in a wide range of samples as
a function of temperature, carrier density, in-plane magnetic field
and source-drain voltage . We show that the 0.7
structure is not due to transmission or resonance effects, nor does it arise
from the asymmetry of the heterojunction in the growth direction. All the 1D
subbands show Zeeman splitting at high , and in the wide channel
limit the -factor is , close to that of bulk GaAs.
As the channel is progressively narrowed we measure an exchange-enhanced
-factor. The measurements establish that the 0.7 structure is related to
spin, and that electron-electron interactions become important for the last few
conducting 1D subbands.Comment: 8 pages, 7 figures (accepted in Phys. Rev. B
Magnetic Anisotropy in Quantum Hall Ferromagnets
We show that the sign of magnetic anisotropy energy in quantum Hall
ferromagnets is determined by a competition between electrostatic and exchange
energies. Easy-axis ferromagnets tend to occur when Landau levels whose states
have similar spatial profiles cross. We report measurements of integer QHE
evolution with magnetic-field tilt. Reentrant behavior observed for the QHE at high tilt angles is attributed to easy-axis anisotropy. This
interpretation is supported by a detailed calculation of the magnetic
anisotropy energy.Comment: 12 pages, 3 figures, submitted to Phys. Rev. Let
- …