56 research outputs found

    Conformational Polymorphism of cRNA of T-Cell-Receptor Genes as a Clone-Specific Molecular Marker for Cutaneous Lymphoma

    Get PDF
    A novel molecular assay for the detection and characterization of monoclonal lymphoid populations in clinical specimens was developed. The assay is based on the principle that upon non-denaturing polyacrylamide gel electrophoresis RNA molecules separate into several metastable conformational forms. These conformational polymorphisms strictly depend on the nucleotide sequence of the individual molecule. Using DNA from formalin-fixed, paraffin-embedded tissue of patients with mycosis fungoides, highly variable junctional sequences of rearranged T-cell receptor gamma genes were amplified by polymerase chain reaction. Subsequently, the polymerase chain reactions products were transcribed into complementary RNA and analyzed by non-denaturing polyacrylamide gel electrophoresis. In clinical specimens with a monoclonal lymphoid population, a clone-specific pattern of bands was identified representing conformational polymorphisms of cRNA molecules of rearranged T-cell receptor gamma genes of the predominant lymphoid clone. Three biopsies from one patient taken from different sites of the body over 3 years yielded an identical pattern of bands. This methodology provides a novel and rapid tool for the molecular identification and characterization of clonal lymphoid populations in clinical specimens. It is likely to be of special value for studies on the clonal evolution of lymphoid disorders of the skin

    Using cfRNA as a tool to evaluate clinical treatment outcomes in patients with metastatic lung cancers and other tumors

    Get PDF
    Aim: We report an exploratory analysis of cfRNA as a biomarker to monitor clinical responses in non-small cell lung cancer (NSCLC), breast cancer, and colorectal cancer (CRC). An analysis of cfRNA as a method for measuring PD-L1 expression with comparison to clinical responses was also performed in the NSCLC cohort. Methods: Blood samples were collected from 127 patients with metastatic disease that were undergoing therapy, 52 with NSCLC, 50 with breast cancer, and 25 with CRC. cfRNA was purified from fractionated plasma, and following reverse transcription (RT), total cfRNA and gene expression of PD-L1were analyzed by real-time polymerase chain reaction (qPCR) using beta-actin expression as a surrogate for relative amounts of cfDNA and cfRNA. For the concordance study of liquid biopsies and tissue biopsies, the isolated RNA was analyzed by RNAseq for the expressions of 13 genes. We had to close the study early due to a lack of follow-up during the Covid-19 pandemic. Results: We collected a total of 373 blood samples. Mean cfRNA PCR signals after RT were about 50-fold higher than those of cfDNA. cfRNA was detected in all patients, while cfDNA was detected in 88% of them. A high concordance was found for the expression levels of 13 genes between blood and solid tumor tissue. Changes in cfRNA levels followed over the course of treatments were associated with response to therapy, increasing in progressive disease (PD) and falling when a partial response (PR) occurred. The expression of PD-L1 over time in patients treated with immunotherapy decreased with PR but increased with PD. Pre-treatment levels of PD-L1 were predictive of response in patients treated with immunotherapy. Conclusion: Changes in cfRNA correlate with clinical response to the therapy. Total cfRNA may be useful in predicting clinical outcomes. PD-L1 gene expression may provide a biomarker to predict response to PD-L1 inhibition

    Efficacy of laser capture microdissection plus RT-PCR technique in analyzing gene expression levels in human gastric cancer and colon cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, and orotate phosphoribosyltransferase gene expressions are reported to be valid predictive markers for 5-fluorouracil sensitivity to gastrointestinal cancer. For more reliable predictability, their expressions in cancer cells and stromal cells in the cancerous tissue (cancerous stroma) have been separately investigated using laser capture microdissection.</p> <p>Methods</p> <p>Thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, and orotate phosphoribosyltransferase mRNA in cancer cells and cancerous stroma from samples of 47 gastric and 43 colon cancers were separately quantified by reverse transcription polymerase chain reaction after laser capture microdissection.</p> <p>Results</p> <p>In both gastric and colon cancers, thymidylate synthase and orotate phosphoribosyltransferase mRNA expressions were higher (p < 0.0001, p <0.0001 respectively in gastric cancer and P = 0.0002, p < 0.0001 respectively in colon cancer) and dihydropyrimidine dehydrogenase mRNA expressions were lower in cancer cells than in cancerous stroma (P = 0.0136 in gastric cancer and p < 0.0001 in colon cancer). In contrast, thymidine phosphorylase mRNA was higher in cancer cells than in cancerous stroma in gastric cancer (p < 0.0001) and lower in cancer cells than in cancerous stroma in colon cancer (P = 0.0055).</p> <p>Conclusion</p> <p>By using this method, we could estimate gene expressions separately in cancer cells and stromal cells from colon and gastric cancers, in spite of the amount of stromal tissue. Our method is thought to be useful for accurately evaluating intratumoral gene expressions.</p

    Pharmacogenetic Analysis of INT 0144 Trial: Association of Polymorphisms with Survival and Toxicity in Rectal Cancer Patients Treated with 5-FU and Radiation

    Full text link
    PURPOSE We tested whether 18 polymorphisms in 16 genes (GSTP1, COX2, IL10, EGFR, EGF, FGFR4, CCDN1, VEGFR2, VEGF, CXCR2, IL8, MMP3, ICAM1, ERCC1, RAD51, and XRCC3) would predict disease-free survival (DFS), overall survival (OS), and toxicity in the INT0144 trial, which was designed to investigate different postoperative regimens of 5-fluorouracil (5-FU)-based chemoradiation (CRT) in locally advanced rectal cancers: Arm 1 consisted of bolus 5-FU followed by 5-FU protracted venous infusion (PVI) with radiotherapy; arm 2 was induction and concomitant PVI 5-FU with radiotherapy and arm 3 was induction and concomitant bolus 5-FU with radiotherapy. EXPERIMENTAL DESIGN DNA from 746 stage II/III rectal patients enrolled in the Southwest Oncology Group (SWOG) S9304 phase III trial was analyzed. Genomic DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) tumor tissue. The polymorphisms were analyzed using direct DNA-sequencing or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS GSTP1-Ile105Val (rs1695) was significantly associated with DFS and OS and its effect did not vary by treatment arm. The five-year DFS and OS were 53% and 58%, respectively, for G/G, 66% and 72% for G/A, and 57% and 66% for A/A patients. In arm 2, IL8-251A/A genotype (rs4073) was associated with a lower risk of toxicities (P = 0.04). The VEGFR2 H472Q Q/Q genotype (rs1870377) was associated with a higher risk of grade 3-5 proximal upper gastrointestinal tract (PUGIT) mucositis (P = 0.04) in arm 2. However, in arm 1, this genotype was associated with a lower risk of PUGIT mucositis (P = 0.004). CONCLUSION rs1695 may be prognostic in patients with rectal cancer treated with adjuvant CRT. rs4073 and rs1870377 may exhibit different associations with toxicity, according to the 5-FU schedule

    Loss of heterozygosity at thymidylate synthase locus in Barrett's metaplasia, dysplasia, and carcinoma sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Thymidylate synthase (TS) </it>is known to have a unique 28 bp tandemly repeated sequence in the promoter region, and the majorities of subjects have a heterozygous double repeat/triple repeat genotype in their non-cancerous tissue. Loss of heterozygosity (LOH) at the <it>TS </it>locus is known to occur in cancer patients, but there is no evidence that it is present in precancerous tissue. The aim of this study was to analyze the frequency and timing of LOH at the <it>TS </it>locus in Barrett-associated adenocarcinoma (BA) and its precursory lesions, such as intestinal metaplasia (IM) and dysplasia.</p> <p>Methods</p> <p>One hundred twenty-three samples (including 37 with gastroesophageal reflux disease (GERD), 29 with IM, 13 with dysplasia, and 44 with BA) were obtained from 100 patients. Biopsies were obtained from the lower esophageal mucosa/IM/dysplasia/BA, when available. Normal squamous tissue from the upper esophagus was taken as a control. All tissues were analyzed for the <it>TS </it>genotype and TS mRNA expression using the real-time reverse-transcription polymerase chain reaction (RT-PCR) method after laser-capture microdissection.</p> <p>Results</p> <p>Among the patients with informative heterozygous genotype in their control samples, no sample with LOH at the <it>TS </it>locus was observed in the lower esophageal mucosa in GERD patients (0/22 samples). However, 6 out of 21 samples (28.6%) had LOH in IM, 2 of 7 (28.6%) in dysplasia, and 10 of 25 (40.0%) in BA. No significant difference in <it>TS </it>mRNA expression levels was observed between <it>TS </it>genotypes.</p> <p>Conclusion</p> <p>Our results demonstrate that LOH is a relatively frequent and early event in the IM-BA sequence.</p

    Association of Epidermal Growth Factor Receptor Activating Mutations with Low ERCC1 Gene Expression in Non-small Cell Lung Cancer

    Get PDF
    Introduction: Patients with non-small cell lung cancer (NSCLC) with cancers harboring activating mutations in the epidermal growth factor receptor (EGFR) show improved efficacy from EGFR tyrosine kinase inhibitors. Some clinical studies also suggest enhanced efficacy of platinum-based chemotherapy in patients with EGFR-mutant cancers. We investigated the relationship of EGFR mutation status and DNA repair capacity, as exemplified by excision repair cross-complementing 1 (ERCC1) gene expression, as a potential explanation for this observation. Methods: Microdissected formalin-fixed paraffin-embedded tumors from 1207 patients with NSCLC were analyzed by real-time polymerase chain reaction for mRNA expression levels of ERCC1 and for EGFR mutation status by an allele-specific polymerase chain reaction assay. Results: NSCLC subtype was adenocarcinoma (AC) in 712 patients, squamous in 175, and not otherwise specified or other in 320. EGFR activating mutations were detected in 183/1207 patients (15.2%). Median ERCC1 expression overall was 1.82 (range, 0.22-27.31) and was histology related: AC, median = 1.68 (0.22-11.33) and squamous, median = 2.42 (0.51-14.28) (p < 0.001). Using a previously defined reference level of <1.7, ERCC1 expression was categorized as low in 556 of 1207 patients (46.1%). The presence of EGFR mutations was highly associated with ERCC1 expression (p < 0.001). This association was retained when adjusting for AC histologic subtype (p = 0.001). Conclusions: NSCLC specimens harboring EGFR activating mutations are more likely to express low ERCC1 mRNA levels. Whether these findings translate into enhanced clinical efficacy of EGFR-mutant cancers to platinum-based chemotherapy remains to be determined
    corecore