26 research outputs found

    Chimeric T-cell receptors: new challenges for targeted immunotherapy in hematologic malignancies

    Get PDF
    Chimeric T-cell receptors (ChTCR), are a fascinating technological step in the field of immunotherapy for orienting the activity of immune cells towards specific molecular targets expressed on the cell surface of various tumors, including hematologic malignancies. The main characteristics of ChTCR are their ability to redirect T-cell specificity and their killing/effector activity toward a selected target in a non MHC-restricted manner, exploiting the antigen binding properties of monoclonal antibodies. ChTCR are, in fact, artificial T-cell receptors constituted by an antigen-recognizing antibody molecule linked to a T-cell triggering domain. Various hematologic malignancies represent optimal targets for the exploitation of ChTCR, because of the bright expression of specific antigens on the surface of tumor cells. Thus, CD19 and CD20 have been targeted for B-cell lymphoid tumors (acute lymphoblastic leukemia-ALL, lymphomas and chronic lymphocytic leukemia-CLL), CD33 for myeloid leukemia, and CD30 for lymphomas. Even though technical and safety progresses are still needed to improve the profile of gene transfer and protein expression of ChTCR, phase 1 trials will be carried out in the near future to demonstrate the feasibility of their clinical translation and, it is be hoped, give preliminary indications about their anti-tumor efficacy

    Mesenchymal Stromal Cells Do Not Increase the Risk of Viral Reactivation Nor the Severity of Viral Events in Recipients of Allogeneic Stem Cell Transplantation

    Get PDF
    Mesenchymal stromal cells (MSC) are tested in clinical trials to treat graft versus host disease (GvHD) after stem cell transplantation (SCT). In vitro studies demonstrated MSC's broad immunosuppressive activity. As infections represent a major risk after SCT, it is important to understand the role of MSC in this context. We analyzed 24 patients (pts) receiving MSC for GvHD in our Unit between 2009 and 2011. We recorded viral reactivations as measured in whole blood with polymerase chain reaction for 100 days following MSC administration. In patients with a documented viral reactivation in the first 3 days following MSCs infusion the frequency of virus-specific IFNgamma-producing cells was determined through enzyme-linked immunospot assay. In our cohort of patients viral reactivation after MSC infusion occurred in 45% of the cases, which did not significantly differ from the incidence in a historical cohort of patients affected by steroid resistant GvHD and treated with conventional immunosuppression. No patient presented severe form of infection. Two cases could be checked for immunological response to viral stimulus and demonstrated virus specific T-cytotoxic lymphocyte activity. In our experience MSC infusion did not prove to trigger more frequent or severer viral reactivations in the post transplantation setting

    Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex

    Get PDF
    Human cytomegalovirus (HCMV) is a widely circulating pathogen that causes severe disease in immunocompromised patients and infected fetuses. By immortalizing memory B cells from HCMV-immune donors, we isolated a panel of human monoclonal antibodies that neutralized at extremely low concentrations (90% inhibitory concentration [IC90] values ranging from 5 to 200 pM) HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Antibodies against gB, gH, or gM/gN were also isolated and, albeit less potent, were able to neutralize infection of both endothelial-epithelial cells and fibroblasts. This study describes unusually potent neutralizing antibodies against HCMV that might be used for passive immunotherapy and identifies, through the use of such antibodies, novel antigenic targets in HCMV for the design of immunogens capable of eliciting previously unknown neutralizing antibody responses

    The chemerin/CMKLR1 axis regulates intestinal graft-versus-host disease

    Get PDF
    : Gastrointestinal graft-versus-host disease (GvHD) is a major cause of mortality and morbidity following allogeneic bone marrow transplantation (allo-BMT). Chemerin is a chemotactic protein that recruits leukocytes to inflamed tissues by interacting with ChemR23/CMKLR1, a chemotactic receptor expressed by leukocytes, including macrophages. During acute GvHD, chemerin plasma levels were strongly increased in allo-BM-transplanted mice. The role of the chemerin/CMKLR1 axis in GvHD was investigated using Cmklr1-KO mice. WT mice transplanted with an allogeneic graft from Cmklr1-KO donors (t-KO) had worse survival and more severe GvHD. Histological analysis demonstrated that the gastrointestinal tract was the organ mostly affected by GvHD in t-KO mice. The severe colitis of t-KO mice was characterized by massive neutrophil infiltration and tissue damage associated with bacterial translocation and exacerbated inflammation. Similarly, Cmklr1-KO recipient mice showed increased intestinal pathology in both allogeneic transplant and dextran sulfate sodium-induced colitis. Notably, the adoptive transfer of WT monocytes into t-KO mice mitigated GvHD manifestations by decreasing gut inflammation and T cell activation. In patients, higher chemerin serum levels were predictive of GvHD development. Overall, these results suggest that CMKLR1/chemerin may be a protective pathway for the control of intestinal inflammation and tissue damage in GvHD

    Platelet-lysate-Expanded Mesenchymal Stromal Cells as a Salvage Therapy for Severe Resistant Graft-versus-Host Disease in a Pediatric Population

    Get PDF
    Despite advances in graft-versus-host-disease (GVHD) treatment, it is estimated that overall survival (OS) at 2 years for hematopoietic cell transplantation (HCT) recipients who experience steroid-resistant GVHD is 10%. Among recent therapeutic approaches for GVHD treatment, mesenchymal stromal cells (MSCs) hold a key position. We describe a multicenter experience of 11 pediatric patients diagnosed with acute or chronic GVHD (aGVHD, cGVHD) treated for compassionate use with GMP-grade unrelated HLA-disparate donors' bone marrow-derived MSCs, expanded in platelet-lysate (PL)-containing medium. Eleven patients (aged 4-15 years) received intravenous (i.v.) MSCs for aGVHD or cGVHD, which was resistant to multiple lines of immunosuppression. The median dose was 1.2 × 10 6 /kg (range: 0.7-3.7 × 10 6 /kg). No acute side effects were observed, and no late side effects were reported at a median follow-up of 8 months (range: 4-18 months). Overall response was obtained in 71.4% of patients, with complete response in 23.8% of cases. None of our patients presented GVHD progression upon MSC administration, but 4 patients presented GVHD recurrence 2 to 5 months after infusion. Two patients developed chronic limited GVHD. This study underlines the safety of PL-expanded MSC use in children. MSC efficacy seems to be greater in aGVHD than in cGVHD, even after failure of multiple lines of immunosuppression

    Treatment of Graft versus Host Disease with Mesenchymal Stromal Cells: A Phase I Study on 40 Adult and Pediatric Patients

    Get PDF
    Abstract This phase I multicenter study was aimed at assessing the feasibility and safety of intravenous administration of third party bone marrow–derived mesenchymal stromal cells (MSC) expanded in platelet lysate in 40 patients (15 children and 25 adults), experiencing steroid-resistant grade II to IV graft-versus-host disease (GVHD). Patients received a median of 3 MSC infusions after having failed conventional immunosuppressive therapy. A median cell dose of 1.5 × 10 6 /kg per infusion was administered. No acute toxicity was reported. Overall, 86 adverse events and serious adverse events were reported in the study, most of which (72.1%) were of infectious nature. Overall response rate, measured at 28 days after the last MSC injection, was 67.5%, with 27.5% complete response. The latter was significantly more frequent in patients exhibiting grade II GVHD as compared with higher grades (61.5% versus 11.1%, P = .002) and was borderline significant in children as compared with adults (46.7 versus 16.0%, P = .065). Overall survival at 1 and 2 years from the first MSC administration was 50.0% and 38.6%, with a median survival time of 1.1 years. In conclusion, MSC can be safely administered on top of conventional immunosuppression for steroid resistant GVHD treatment. Eudract Number 2008-007869-23, NCT01764100

    The Bone Marrow Niche in B-Cell Acute Lymphoblastic Leukemia: The Role of Microenvironment from Pre-Leukemia to Overt Leukemia

    No full text
    Genetic lesions predisposing to pediatric B-cell acute lymphoblastic leukemia (B-ALL) arise in utero, generating a clinically silent pre-leukemic phase. We here reviewed the role of the surrounding bone marrow (BM) microenvironment in the persistence and transformation of pre-leukemic clones into fully leukemic cells. In this context, inflammation has been highlighted as a crucial microenvironmental stimulus able to promote genetic instability, leading to the disease manifestation. Moreover, we focused on the cross-talk between the bulk of leukemic cells with the surrounding microenvironment, which creates a “corrupted” BM malignant niche, unfavorable for healthy hematopoietic precursors. In detail, several cell subsets, including stromal, endothelial cells, osteoblasts and immune cells, composing the peculiar leukemic niche, can actively interact with B-ALL blasts. Through deregulated molecular pathways they are able to influence leukemia development, survival, chemoresistance, migratory and invasive properties. The concept that the pre-leukemic and leukemic cell survival and evolution are strictly dependent both on genetic lesions and on the external signals coming from the microenvironment paves the way to a new idea of dual targeting therapeutic strategy
    corecore