595 research outputs found
Dust Grain Orbital Behavior Around Ceres
Many asteroids show indications they have undergone impacts with meteoroid
particles having radii between 0.01 m and 1 m. During such impacts, small dust
grains will be ejected at the impact site. The possibility of these dust grains
(with radii greater than 2.2x10-6 m) forming a halo around a spherical asteroid
(such as Ceres) is investigated using standard numerical integration
techniques. The orbital elements, positions, and velocities are determined for
particles with varying radii taking into account both the influence of gravity,
radiation pressure, and the interplanetary magnetic field (for charged
particles). Under the influence of these forces it is found that dust grains
(under the appropriate conditions) can be injected into orbits with lifetimes
in excess of one year. The lifetime of the orbits is shown to be highly
dependent on the location of the ejection point as well as the angle between
the surface normal and the ejection path. It is also shown that only particles
ejected within 10 degrees relative to the surface tangential survive more than
a few hours and that the longest-lived particles originate along a line
perpendicular to the Ceres-Sun line.Comment: 8 pages, Presented at COSPAR '0
Inelastic Diffraction and Spectroscopy of Very Weakly Bound Clusters
We study the coherent inelastic diffraction of very weakly bound two body
clusters from a material transmission grating. We show that internal
transitions of the clusters can lead to new separate peaks in the diffraction
pattern whose angular positions determine the excitation energies. Using a
quantum mechanical approach to few body scattering theory we determine the
relative peak intensities for the diffraction of the van der Waals dimers
(D_2)_2 and H_2-D_2. Based on the results for these realistic examples we
discuss the possible applications and experimental challenges of this coherent
inelastic diffraction technique.Comment: 15 pages + 5 figures. J. Phys. B (in press
Ultracold collisions between two light indistinguishable diatomic molecules: elastic and rotational energy transfer in HD+HD
A close coupling quantum-mechanical calculation is performed for rotational
energy transfer in a HD+HD collision at very low energy, down to the ultracold
temperatures: K. A global six-dimensional H-H
potential energy surface is adopted from a previous work [Boothroyd {\it et
al.}, J. Chem. Phys., {\bf 116}, 666 (2002).] State-resolved integral cross
sections of different
quantum-mechanical rotational transitions in the HD
molecules and corresponding state-resolved thermal rate coefficients
have been computed. Additionally, for comparison,
H+H calculations for a few selected rotational transitions have also
been performed. The hydrogen and deuterated hydrogen molecules are treated as
rigid rotors in this work. A pronounced isotope effect is identified in the
cross sections of these collisions at low and ultracold temperatures.Comment: 9 pages, 9 figures. Accepted for publication in Physical Review
Gamma-ray emission from dark matter wakes of recoiled black holes
A new scenario for the emission of high-energy gamma-rays from dark matter
annihilation around massive black holes is presented. A black hole can leave
its parent halo, by means of gravitational radiation recoil, in a merger event
or in the asymmetric collapse of its progenitor star. A recoiled black hole
which moves on an almost-radial orbit outside the virial radius of its central
halo, in the cold dark matter background, reaches its apapsis in a finite time.
Near or at the apapsis passage, a high-density wake extending over a large
radius of influence, forms around the black hole. It is shown that significant
gamma-ray emission can result from the enhancement of neutralino annihilation
in these wakes. At its apapsis passage, a black hole is shown to produce a
flash of high-energy gamma-rays whose duration is determined by the mass of the
black hole and the redshift at which it is ejected. The ensemble of such black
holes in the Hubble volume is shown to produce a diffuse high-energy gamma-ray
background whose magnitude is compared to the diffuse emission from dark matter
haloes alone.Comment: version to appear in Astrophysical Journal letters (labels on Fig. 3
corrected
Rotational quenching rate coefficients for H_2 in collisions with H_2 from 2 to 10,000 K
Rate coefficients for rotational transitions in H_2 induced by H_2 impact are
presented. Extensive quantum mechanical coupled-channel calculations based on a
recently published (H_2)_2 potential energy surface were performed. The
potential energy surface used here is presumed to be more reliable than
surfaces used in previous work. Rotational transition cross sections with
initial levels J <= 8 were computed for collision energies ranging between
0.0001 and 2.5 eV, and the corresponding rate coefficients were calculated for
the temperature range 2 < T <10,000 K. In general, agreement with earlier
calculations, which were limited to 100-6000 K, is good though discrepancies
are found at the lowest and highest temperatures. Low-density-limit cooling
functions due to para- and ortho-H_2 collisions are obtained from the
collisional rate coefficients. Implications of the new results for non-thermal
H_2 rotational distributions in molecular regions are also investigated
Morphological parametric mapping of 21 skin sites throughout the body using optical coherence tomography
Background
Changes in body posture cause changes in morphological properties at different skin sites. Although previous studies have reported the thickness of the skin, the details of the postures are not generally given. This paper presents the effect of a change in posture on parameters such as thickness and surface roughness in 21 load-bearing and non-load-bearing sites.
Materials and methods
A total of 12 volunteers (8 males and 4 females) were selected in an age group of 18â35 years and of Fitzpatrick skin type I-III. Images were captured using a clinically-approved VivoSightÂź optical coherence tomography system and analysed using an algorithm provided by Michelson Diagnostics.
Results
Overextension (extending joints to full capacity) resulted in changes to thickness, roughness and undulation of the skin around the body.
Discussion and conclusion
The load-bearing regions have thicker skin compared to non-load-bearing sites. This is the first time that undulation topography of the stratum corneumâstratum lucidum and the dermalâepidermal junction layers have been measured and reported using statistical values such as Ra. The data presented could help to define new skin layer models and to determine the variability of the skin around the body and between participants
The L723 low mass star forming protostellar system: resolving a double core
We present 1.35 mm SMA observations around the low-mass Class 0 source IRAS
19156+1906, at the the center of the L723 dark cloud. We detected emission from
dust as well as emission from H2CO, DCN and CN, which arise from two cores, SMA
1 and SMA 2, separated by 2.9" (880 AU). SMA 2 is associated with VLA 2. SiO
5-4 emission is detected, possibly tracing a region of interaction between the
dense envelope and the outflow. We modeled the dust and the H2CO emission from
the two cores: they have similar physical properties but SMA 2 has a larger
p-H2CO abundance than SMA 1. The p-H2CO abundances found are compatible with
the value of the outer part of the circumstellar envelopes associated with
Class 0 sources. SMA 2 is likely more evolved than SMA 1. The kinematics of the
two sources show marginal evidence of infall and rotation motions. The mass
detected by the SMA observation, which trace scales of ~1000 AU, is only a
small fraction of the mass contained in the large scale molecular envelope,
which suggests that L723 is still in a very early phase of star formation.
Despite the apparent quiescent nature of the L723, fragmentation is occurring
at the center of the cloud at different scales. Thus, at 1000 AU the cloud has
fragmented in two cores, SMA 1 and SMA 2. At the same time, at least one of
these cores, SMA 2, has undergone additional fragmentation at scales of 150 AU,
forming a multiple stellar system.Comment: 35 pages, 15 figures. Accepted to the Astrophysical Journa
A Pre-Protostellar Core in L1551
Large field surveys of NH3, C2S, 13CO and C18O in the L1551 dark cloud have
revealed a prolate, pre-protostellar molecular core (L1551-MC) in a relatively
quiescent region to the northwest of the well-known IRS 5 source. The kinetic
temperature is measured to be 9K, the total mass is ~2Msun, and the average
particle density is 10^4-10^5 cm^(-3). L1551-MC is 2.25' x 1.11' in projection
oriented at a position angle of 133deg. The turbulent motions are on the order
of the sound speed in the medium and contain 4% of the gravitational energy,
E_{grav}, of the core. The angular momentum vector is projected along the major
axis of L1551-MC corresponding to a rotational energy of 2.5E-3(sin
i)^(-2)|E_{grav}|. The thermal energy constitutes about a third of |E_{grav}|
and the virial mass is approximately equal to the total mass. L1551-MC is
gravitationally bound and in the absence of strong, ~160 microgauss, magnetic
fields will likely contract on a ~0.3 Myr time scale. The line profiles of many
molecular species suggest that the cold quiescent interior is surrounded by a
dynamic, perhaps infalling envelope which is embedded within the ambient
molecular gas of L1551.Comment: 27 pages, 7 figures, ApJ accepte
The Yarkovsky Drift's Influence on NEAs: Trends and Predictions with NEOWISE Measurements
We used WISE-derived geometric albedos (p_V) and diameters, as well as
geometric albedos and diameters from the literature, to produce more accurate
diurnal Yarkovsky drift predictions for 540 near-Earth asteroids (NEAs) out of
the current sample of \sim 8,800 known objects. As ten of the twelve objects
with the fastest predicted rates have observed arcs of less than a decade, we
list upcoming apparitions of these NEAs to facilitate observations.Comment: Accepted for publication by The Astronomical Journal. 41 pages, 3
figure
NH3 in the Central 10 pc of the Galaxy I: General Morphology and Kinematic Connections Between the CND and GMCs
New VLA images of NH3 (1,1), (2,2), and (3,3) emission in the central 10
parsecs of the Galaxy trace filamentary streams of gas, several of which appear
to feed the circumnuclear disk (CND). The NH3 images have a spatial resolution
of 16.5''x14.5'' and have better spatial sampling than previous NH3
observations. The images show the ``southern streamer,'' ``50 km/s cloud,'' and
new features including a ``western streamer'', 6 parsecs in length, and a
``northern ridge'' which connects to the CND. NH3(3,3) emission is very similar
to 1.2 mm dust emission indicating that NH3 traces column density well. Ratios
of the NH3(2,2) to (1,1) line intensities give an estimate of the temperature
of the gas and indicate high temperatures close to the nucleus and CND. The new
data cover a velocity range of 270 km/s, including all velocities observed in
the CND, with a resolution of 9.8 km/s. Previous NH3 observations with higher
resolution did not cover the entire range of velocities seen in the CND. The
large-scale kinematics of the CND do not resemble a coherent ring or disk. We
see evidence for a high velocity cloud within a projected distance of 50'' (2
pc) which is only seen in NH3(3,3) and is likely to be hot. Comparison to 6 cm
continuum emission reveals that much of the NH3 emission traces the outer edges
of Sgr A East and was probably pushed outward by this expanding shell. The
connection between the northern ridge (which appears to be swept up by Sgr A
East) and the CND indicates that Sgr A East and the CND are in close proximity
to each other. Kinematic evidence for these connections is presented in this
paper, while the full kinematic analysis of the central 10 pc will be presented
in Paper II.Comment: 16 pages (containing 6 figures), 8 additional JPEG figures. Accepted
for publication in ApJ. For full resolution images, see
http://cfa-www.harvard.edu/~rmcgary/SGRA/nh3_figures.htm
- âŠ