7 research outputs found

    Effect of Crude Oil Quality on Properties of Hydrocracked Vacuum Residue and Its Blends with Cutter Stocks to Produce Fuel Oil

    No full text
    The production of heavy fuel oil from hydrocracked vacuum residue requires dilution of the residue with cutter stocks to reduce viscosity. The hydrocracked residue obtained from different vacuum residue blends originating from diverse crude oils may have divergent properties and interact with the variant cutter stocks in a dissimilar way leading to changeable values of density, sediment content, and viscosity of the obtained fuel oil. H-Oil hydrocracked vacuum residues (VTBs) obtained from different crude blends (Urals, Siberian Light (LSCO), and Basrah Heavy) were diluted with the high aromatic fluid catalytic cracking (FCC) light cycle, heavy cycle, and slurry oil, and the low aromatic fluid catalytic cracking feed hydrotreater diesel cutter stocks and their densities, sediment content, and viscosity of the mixtures were investigated. Intercriteria analysis evaluation of the data generated in this study was performed. It was found that the densities of the blends H-Oil VTB/cutter stocks deviate from the regular solution behavior because of the presence of attractive and repulsive forces between the molecules of the H-Oil VTB and the cutter stocks. Urals and Basrah Heavy crude oils were found to enhance the attractive forces, while the LSCO increases the repulsive forces between the molecules of H-Oil VTBs and those of the FCC gas oils. The viscosity of the H-Oil VTB obtained during hydrocracking of straight run vacuum residue blend was established to linearly depend on the viscosity of the H-Oil vacuum residue feed blend. The applied equations to predict viscosity of blends containing straight run and hydrocracked vacuum residues and cutter stocks proved their good prediction ability with an average relative absolute deviation (%AAD) of 8.8%. While the viscosity was found possible to predict, the sediment content of the blends H-Oil VTBs/cutter stocks was recalcitrant to forecast

    Empirical Modeling of Viscosities and Softening Points of Straight-Run Vacuum Residues from Different Origins and of Hydrocracked Unconverted Vacuum Residues Obtained in Different Conversions

    No full text
    The use of hydrocracked and straight-run vacuum residues in the production of road pavement bitumen requires a good understanding of how the viscosity and softening point can be modeled and controlled. Scientific reports on modeling of these rheological properties for hydrocracked and straight-run vacuum residues are scarce. For that reason, 30 straight-run vacuum residues and 33 hydrocracked vacuum residues obtained in a conversion range of 55–93% were investigated, and the characterization data were employed for modeling purposes. An intercriteria analysis was applied to investigate the statistically meaningful relations between the studied vacuum residue properties. It revealed that the straight-run and hydrocracked vacuum residues were completely different, and therefore their viscosity and softening point should be separately modeled. Through the use of nonlinear regression by applying CAS Maple and NLPSolve with the modified Newton iterative method and the vacuum residue bulk properties the viscosity and softening point were modeled. It was found that the straight-run vacuum residue viscosity was best modeled from the molecular weight and specific gravity, whereas the softening point was found to be best modeled from the molecular weight and C7-asphaltene content. The hydrocracked vacuum residue viscosity and softening point were modeled from a single property: the Conradson carbon content. The vacuum residue viscosity models developed in this work were found to allow prediction of the asphaltene content from the molecular weight and specific gravity with an average absolute relative error of 20.9%, which was lower of that of the model of Samie and Mortaheb (Fuel. 2021, 305, 121609)—32.6%

    Different Nonlinear Regression Techniques and Sensitivity Analysis as Tools to Optimize Oil Viscosity Modeling

    No full text
    Four nonlinear regression techniques were explored to model gas oil viscosity on the base of Walther’s empirical equation. With the initial database of 41 primary and secondary vacuum gas oils, four models were developed with a comparable accuracy of viscosity calculation. The Akaike information criterion and Bayesian information criterion selected the least square relative errors (LSRE) model as the best one. The sensitivity analysis with respect to the given data also revealed that the LSRE model is the most stable one with the lowest values of standard deviations of derivatives. Verification of the gas oil viscosity prediction ability was carried out with another set of 43 gas oils showing remarkably better accuracy with the LSRE model. The LSRE was also found to predict better viscosity for the 43 test gas oils relative to the Aboul Seoud and Moharam model and the Kotzakoulakis and George

    Comparison of Empirical Models to Predict Viscosity of Secondary Vacuum Gas Oils

    No full text
    This work presents characterization data and viscosity of 34 secondary vacuum gas oils (H-Oil gas oils, visbreaker gas oils, and fluid catalytic cracking slurry oils) with aromatic content reaching up to 100 wt.%. Inter-criteria analysis was employed to define the secondary VGO characteristic parameters which have an effect on viscosity. Seven published empirical models to predict viscosity of the secondary vacuum gas oils were examined for their prediction ability. The empirical model of Aboul-Seud and Moharam was found to have the lowest error of prediction. A modification of Aboul-Seoud and Moharam model by separating the power terms accounting for the effects of specific gravity and average boiling point improves the accuracy of viscosity prediction. It was discovered that the relation of slope of viscosity decrease with temperature enhancement for the secondary vacuum gas oil is not a constant. This slope increases with the average boiling point and the specific gravity augmentation, a fact that has not been discussed before

    Correlations of HTSD to TBP and Bulk Properties to Saturate Content of a Wide Variety of Crude Oils

    No full text
    Forty-eight crude oils with variations in specific gravity (0.782 ≤ SG ≤ 1.002), sulphur content (0.03 ≤ S ≤ 5.6 wt.%), saturate content (23.5 ≤ Sat. ≤ 92.9 wt.%), asphaltene content (0.1 ≤ As ≤ 22.2 wt.%), and vacuum residue content (1.4 ≤ VR ≤ 60.7 wt.%) were characterized with HTSD, TBP, and SARA analyses. A modified SARA analysis of petroleum that allows for the attainment of a mass balance ≥97 wt.% for light crude oils was proposed, a procedure for the simulation of petroleum TBP curves from HTSD data using nonlinear regression and Riazi’s distribution model was developed, and a new correlation to predict petroleum saturate content from specific gravity and pour point with an average absolute deviation of 2.5 wt.%, maximum absolute deviation of 6.6 wt.%, and bias of 0.01 wt.% was developed. Intercriteria analysis was employed to evaluate the presence of statistically meaningful relations between the different petroleum properties and to evaluate the extent of similarity between the studied petroleum crudes. It was found that the extent of similarity between the crude oils based on HTSD analysis data could be discerned from data on the Kw characterization factor of narrow crude oil fractions. The results from this study showed that contrary to the generally accepted concept of the constant Kw characterization factor, the Kw factors of narrow fractions differ from that of crude oil. Moreover, the distributions of Kw factors of the different crudes were different

    Evaluation of the Different Compatibility Indices to Model and Predict Oil Colloidal Stability and Its Relation to Crude Oil Desalting

    No full text
    Thirty crude oils, belonging to light, medium, heavy, and extra heavy, light sulfur, and high sulfur have been characterized and compatibility indices defined. Nine crude oil compatibility indices have been employed to evaluate the compatibility of crude blends from the thirty individual crude oils. Intercriteria analysis revealed the relations between the different compatibility indices, and the different petroleum properties. Tetra-plot was employed to model crude blend compatibility. The ratio of solubility blending number to insolubility number was found to best describe the desalting efficiency, and therefore could be considered as the compatible index that best models the crude oil blend compatibility. Density of crude oil and the n-heptane dilution test seem to be sufficient to model, and predict the compatibility of crude blends

    Empirical Models to Characterize the Structural and Physiochemical Properties of Vacuum Gas Oils with Different Saturate Contents

    No full text
    Inter-criteria analysis was employed in VGO samples having a saturate content between 0.8 and 93.1 wt.% to define the statistically significant relations between physicochemical properties, empirical structural models and vacuum gas oil compositional information. The use of a logistic function and employment of a non-linear least squares method along with the aromatic ring index allowed for our newly developed correlation to accurately predict the saturate content of VGOs. The empirical models developed in this study can be used not only for obtaining the valuable structural information necessary to predict the behavior of VGOs in the conversion processes but can also be utilized to detect incorrectly performed SARA analyses. This work confirms the possibility of predicting the contents of VGO compounds from physicochemical properties and empirical models
    corecore