2 research outputs found

    Biomass-Derived Porous Carbon Materials for Li-Ion Battery

    No full text
    Biomass-based carbon nanofibers (CNF) were synthesized using lignin extracted from sawdust and polyacrylonitrile (PAN) (30:70) with the help of the electrospinning method and subsequent stabilization at 220 °C and carbonization at 800, 900, and 1000 °C. The synthesized CNFs were studied by scanning electron microscopy, energy-dispersive X-ray analysis, Raman spectroscopy, and the Brunauer–Emmett–Teller method. The temperature effect shows that CNF carbonized at 800 °C has excellent stability at different current densities and high capacitance. CNF 800 in the first test cycle at a current density of 100 mA/g shows an initial capacity of 798 mAh/g and an initial coulomb efficiency of 69.5%. The CNF 900 and 1000 show an initial capacity of 668 mAh/g and 594 mAh/g, and an initial Coulomb efficiency of 52% and 51%. With a long cycle (for 500 cycles), all three samples at a current density of 500 mA/g show stable cycling in different capacities (CNF 800 in the region of 300–400 mAh/g, CNF 900 and 1000 in the region of 100–200 mAh/g)

    Electrochemical Performance of Chemically Activated Carbons from Sawdust as Supercapacitor Electrodes

    No full text
    Activated carbons (ACs) have been the most widespread carbon materials used in supercapacitors (SCs) due to their easy processing methods, good electrical conductivity, and abundant porosity. For the manufacture of electrodes, the obtained activated carbon based on sawdust (karagash and pine) was mixed with conductive carbon and polyvinylidene fluoride as a binder, in ratios of 75% activated carbon, 10% conductive carbon black, and 15% polyvinylidene fluoride (PVDF) in an N-methyl pyrrolidinone solution, to form a slurry and applied to a titanium foil. The total mass of each electrode was limited to vary from 2.0 to 4.0 mg. After that, the electrodes fitted with the separator and electrolyte solution were symmetrically assembled into sandwich-type cell construction. The carbon’s electrochemical properties were evaluated using cyclic voltammetry (CV) and galvanostatic charge–discharge (CGD) studies in a two-electrode cell in 6M KOH. The CV and CGD measurements were realized at different scan rates (5–160 mV s−1) and current densities (0.1–2.0 A g−1) in the potential window of 1 V. ACs from KOH activation showed a high specific capacitance of 202 F g−1 for karagash sawdust and 161 F g−1 for pine sawdust at low mass loading of 1.15 mg cm−2 and scan rate of 5 mV s−1 in cyclic voltammetry test and 193 and 159 F g−1 at a gravimetric current density of 0.1 A g−1 in the galvanostatic charge–discharge test. The specific discharge capacitance is 177 and 131 F g−1 at a current density of 2 A g−1. Even at a relatively high scan rate of 160 mV s−1, a decent specific capacitance of 147 F g−1 and 114 F g−1 was obtained, leading to high energy densities of 26.0 and 22.1 W h kg−1 based on averaged electrode mass. Surface properties and the porous structure of the ACs were studied by scanning electron microscopy, energy-dispersive X-ray analysis, Raman spectroscopy, and the Brunauer–Emmett–Teller method
    corecore