4 research outputs found

    Punicalagin Induces Serum Low-Density Lipoprotein Influx to Macrophages

    Get PDF
    High levels of circulating low-density lipoprotein (LDL) are a primary initiating event in the development of atherosclerosis. Recently, the antiatherogenic effect of polyphenols has been shown to be exerted via a mechanism unrelated to their antioxidant capacity and to stem from their interaction with specific intracellular or plasma proteins. In this study, we investigated the interaction of the main polyphenol in pomegranate, punicalagin, with apolipoprotein B-100 (ApoB100) that surrounds LDL. Punicalagin bound to ApoB100 at low concentrations (0.25–4 μM). Upon binding, it induced LDL influx to macrophages in a concentration-dependent manner, up to 2.5-fold. In contrast, another polyphenol which binds to ApoB100, glabridin, did not affect LDL influx. We further showed that LDL influx occurs specifically through the LDL receptor, with LDL then accumulating in the cell cytoplasm. Taken together with the findings of Aviram et al., 2000, that pomegranate juice and punicalagin induce plasma LDL removal and inhibit macrophage cholesterol synthesis and accumulation, our results suggest that, upon binding, punicalagin stimulates LDL influx to macrophages, thus reducing circulating cholesterol levels

    Flavonoids-Macromolecules Interactions in Human Diseases with Focus on Alzheimer, Atherosclerosis and Cancer

    No full text
    Flavonoids, a class of polyphenols, consumed daily in our diet, are associated with a reduced risk for oxidative stress (OS)-related chronic diseases, such as cardiovascular disease, neurodegenerative diseases, cancer, and inflammation. The involvement of flavonoids with OS-related chronic diseases have been traditionally attributed to their antioxidant activity. However, evidence from recent studies indicate that flavonoids’ beneficial impact may be assigned to their interaction with cellular macromolecules, rather than exerting a direct antioxidant effect. This review provides an overview of the recent evolving research on interactions between the flavonoids and lipoproteins, proteins, chromatin, DNA, and cell-signaling molecules that are involved in the OS-related chronic diseases; it focuses on the mechanisms by which flavonoids attenuate the development of the aforementioned chronic diseases via direct and indirect effects on gene expression and cellular functions. The current review summarizes data from the literature and from our recent research and then compares specific flavonoids’ interactions with their targets, focusing on flavonoid structure–activity relationships. In addition, the various methods of evaluating flavonoid–protein and flavonoid–DNA interactions are presented. Our aim is to shed light on flavonoids action in the body, beyond their well-established, direct antioxidant activity, and to provide insights into the mechanisms by which these small molecules, consumed daily, influence cellular functions

    S-Nitrosylation of Paraxonase 1 (PON1) Elevates Its Hydrolytic and Antioxidant Activities

    No full text
    Covalent binding between nitric oxide (NO) and a protein’s free thiol group (SH) is termed protein S-nitrosylation. Protein S-nitrosylation is involved in cellular regulation mechanisms that underlie a wide range of critical functions, such as apoptosis, alteration of enzyme activities, and transcription-factor stability. Impaired protein S-nitrosylation is associated with a growing list of pathophysiological conditions, such as cardiovascular disease, multiple sclerosis, pulmonary hypertension, and sickle cell disease. The enzyme paraoxonase 1 (PON1) binds to high-density lipoprotein to provide many of its antiatherogenic properties. The enzyme has a strong antioxidant capacity, which protects fats, lipids, and lipoproteins from oxidation, in addition to breaking down oxidized fats. We investigated the effect of S-S transnitrosylation on PON1 activities. Incubation of recombinant PON1 (rePON1) with nitrosylated human serum albumin (HSA-NO) resulted in S-nitrosylation of about 70% of the rePON1, as measured by Q-TOF LC/MS. S-nitrosylation significantly increased rePON1 hydrolytic activities. It also increased rePON1’s ability to inhibit low-density lipoprotein oxidation induced by Cu2+. Finally, it increased the enzyme’s penetration into macrophage cells by 31%. Our findings suggest that S-nitrosylation of rePON1 improves its biological functions which may positively affect atherosclerosis disease progression

    Towards a Consensus on Alzheimer’s Disease Comorbidity?

    No full text
    Alzheimer’s disease (AD) is often comorbid with other pathologies. First, we review shortly the diseases most associated with AD in the clinic. Then we query PubMed citations for the co-occurrence of AD with other diseases, using a list of 400 common pathologies. Significantly, AD is found to be associated with schizophrenia and psychosis, sleep insomnia and apnea, type 2 diabetes, atherosclerosis, hypertension, cardiovascular diseases, obesity, fibrillation, osteoporosis, arthritis, glaucoma, metabolic syndrome, pain, herpes, HIV, alcoholism, heart failure, migraine, pneumonia, dyslipidemia, COPD and asthma, hearing loss, and tobacco smoking. Trivially, AD is also found to be associated with several neurodegenerative diseases, which are disregarded. Notably, our predicted results are consistent with the previously published clinical data and correlate nicely with individual publications. Our results emphasize risk factors and promulgate diseases often associated with AD. Interestingly, the comorbid diseases are often degenerative diseases exacerbated by reactive oxygen species, thus underlining the potential role of antioxidants in the treatment of AD and comorbid diseases
    corecore