2 research outputs found

    Reassessing the Diagnostic Utility of the Split Hand Index in Amyotrophic Lateral Sclerosis Patients—The Divide by Zero Problem

    No full text
    We set out to assess the diagnostic utility of the split hand index (SHI) for amyotrophic lateral sclerosis (ALS) and also to see if and how it can be applied to severely atrophied muscles, a frequent finding in this setting. We enrolled 38 patients from our clinic, 19 diagnosed with ALS and 19 controls, matched for age and sex. The SHI was calculated, on both sides, for all the patients. We calculated a SHI of 0 when the abductor pollicis brevis muscle (ABD) or first dorsal interosseous muscle (FDI) compound muscle action potentials (CMAPs) were unobtainable, and we allotted a value of 0.1 mV to abductor digiti minimi muscle (ADM) CMAP, for mathematical purposes, when the value would have been 0. The means differences were large between groups, with a significant variance heterogeneity. We performed a ROC analysis and obtained an accuracy of 0.83 for a SHI of 7.2, p-value < 0.0001. In conclusion, we reaffirm the utility of the SHI in the diagnosis of ALS, especially in limb onset cases, and we think that it can be safely extended to severely atrophied muscles with absent or very low CMAP values, without endangering the sensitivity or specificity

    Magnetic Resonance Imaging of Multiple Cerebral and Spinal Cavernous Malformations of a Patient with Dementia and Tetraparesis

    No full text
    Cavernomas are rare cerebrovascular malformations that usually occur in sporadic forms with solitary lesions located most often in the hemispheric white matter, but also in the infratentorial or spinal region. Multiple lesions at different CNS levels are considered a hallmark for the familial form of the disease. The diagnostic modality of choice for cerebral cavernous malformations (CCMs) is magnetic resonance imaging (MRI). We present an intriguing case of a 65-year-old male admitted to our hospital with tetraparesis and cognitive impairment where highly sensitive MRI sequences identified many cerebral cavernous lesions at the supra-, infratentorial and cervical–thoracic spine levels, some of them with recent signs of bleeding in a patient with oral anticoagulant therapy due to atrial fibrillation. The mechanism of cognitive impairment in this patient is most probably the interruption of strategic white matter tracts, as it is known to happen in other subcortical vascular pathologies. MRI can be helpful not only in mapping the anatomical distribution of lesions, but also in weighing the risks and making decisions regarding whether or not to continue oral anticoagulant therapy
    corecore