2 research outputs found

    Microbiological Non-Culture-Based Methods for Diagnosing Invasive Pulmonary Aspergillosis in ICU Patients

    No full text
    The diagnosis of invasive pulmonary aspergillosis (IPA) in intensive care unit (ICU) patients is crucial since most clinical signs are not specific to invasive fungal infections. To detect an IPA, different criteria should be considered. Next to host factors and radiological signs, microbiological criteria should be fulfilled. For microbiological diagnostics, different methods are available. Next to the conventional culture-based approaches like staining and culture, non-culture-based methods can increase sensitivity and improve time-to-result. Besides fungal biomarkers, like galactomannan and (1→3)-β-D-glucan as nonspecific tools, molecular-based methods can also offer detection of resistance determinants. The detection of novel biomarkers or targets is promising. In this review, we evaluate and discuss the value of non-culture-based microbiological methods (galactomannan, (1→3)-β-D-glucan, Aspergillus PCR, new biomarker/targets) for diagnosing IPA in ICU patients

    In Vitro and In Vivo Activity of Luliconazole (NND-502) against Planktonic Cells and Biofilms of Azole Resistant <i>Aspergillus fumigatus</i>

    No full text
    Aspergillus fumigatus has become a significant threat in clinical settings. Cases of invasive infections with azole-resistant A. fumigatus isolates (ARAF) increased recently. Developing strategies for dealing with ARAF has become crucial. We here investigated the in-vitro and in-vivo activity of the imidazole luliconazole (LLCZ) against clinical ARAF. In total, the LLCZ minimum inhibitory concentrations (MICs) were tested for 101 A. fumigatus isolates (84 ARAF and 17 azole-susceptible A. fumigatus as wild-type controls) according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Additionally, antifungal activity was assessed in vitro, including an XTT planktonic growth kinetics assay and biofilm assays (crystal violet and XTT assay). Further, a single-dose LLCZ treatment (152 mg/L) was tested for seven days in vivo in a Galleria mellonella infection model. LLCZ showed an MIC50 of 0.002 mg/L and no significant difference was found between triazole-resistant and wild-type isolates. Growth inhibition took place between 6 and 12 h after the start of incubation. LLCZ inhibited biofilm formation when added in the pre-adhesion stages. In vivo, single-dose LLCZ-treated larvae show a significantly higher survival percentage than the control group (20%). In conclusion, LLCZ has activity against planktonic cells and early biofilms of ARAF
    corecore