8,489 research outputs found

    Quantum Error Correction of Time-Correlated Errors

    Get PDF
    The complexity of the error correction circuitry forces us to design quantum error correction codes capable of correcting a single error per error correction cycle. Yet, time-correlated error are common for physical implementations of quantum systems; an error corrected during the previous cycle may reoccur later due to physical processes specific for each physical implementation of the qubits. In this paper we study quantum error correction for a restricted class of time-correlated errors in a spin-boson model. The algorithm we propose allows the correction of two errors per error correction cycle, provided that one of them is time-correlated. The algorithm can be applied to any stabilizer code when the two logical qubits ∣0L>\mid 0_L> and ∣1L>\mid 1_L> are entangled states of 2n2^{n} basis states in H2n\mathcal{H}_{2^n}.Comment: 14 pages, 3 figure

    Directionality reduces the impact of epidemics in multilayer networks

    Get PDF
    The study of how diseases spread has greatly benefited from advances in network modeling. Recently, a class of networks known as multilayer graphs has been shown to describe more accurately many real systems, making it possible to address more complex scenarios in epidemiology such as the interaction between different pathogens or multiple strains of the same disease. In this work, we study in depth a class of networks that have gone unnoticed up to now, despite of its relevance for spreading dynamics. Specifically, we focus on directed multilayer networks, characterized by the existence of directed links, either within the layers or across layers. Using the generating function approach and numerical simulations of a stochastic susceptible-infected-susceptible (SIS) model, we calculate the epidemic threshold for these networks for different degree distributions of the networks. Our results show that the main feature that determines the value of the epidemic threshold is the directionality of the links connecting different layers, regardless of the degree distribution chosen. Our findings are of utmost interest given the ubiquitous presence of directed multilayer networks and the widespread use of disease-like spreading processes in a broad range of phenomena such as diffusion processes in social and transportation systems.Comment: 20 pages including 7 figures. Submitted for publicatio
    • …
    corecore