45 research outputs found

    1/Nc1/N_c Expansion for Excited Baryons

    Get PDF
    We derive consistency conditions which constrain the possible form of the strong couplings of the excited baryons to the pions. The consistency conditions follow from requiring the pion-excited baryon scattering amplitudes to satisfy the large-N_c Witten counting rules and are analogous to consistency conditions used by Dashen, Jenkins and Manohar and others for s-wave baryons. The consistency conditions are explicitly solved, giving the most general allowed form of the strong vertices for excited baryons in the large-N_c limit. We show that the solutions to the large-N_c consistency conditions coincide with the predictions of the nonrelativistic quark model for these states, extending the results previously obtained for the s-wave baryons. The 1/N_c corrections to these predictions are studied in the quark model with arbitrary number of colors N_c.Comment: 56 pages, REVTeX; one new Appendix added containing a discussion of the results in the language of quark operator

    Excited Baryons Phenomenology from Large-NcN_c QCD

    Get PDF
    We present a phenomenological analysis of the strong couplings of the negative-parity L=1 baryons from the perspective of the large-NcN_c expansion. In the large-NcN_c limit the mass spectrum and mixing pattern of these states are constrained in a very specific way. The mixing angles are completely determined in this limit, with predictions in good agreement with experiment. In the combined large-NcN_c and SU(3) limits the pion couplings of the five negative-parity octets to the ground state baryons are given in terms of only 3 independent couplings. The large-NcN_c predictions for the ratios of strong couplings are tested against experimental data.Comment: 15 pages, REVTe

    Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette (lux) in a Mammalian Cell Line

    Get PDF
    The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2)) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH(2) supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    In Vivo Bioluminescent Imaging (BLI): Noninvasive Visualization and Interrogation of Biological Processes in Living Animals

    Get PDF
    In vivo bioluminescent imaging (BLI) is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progression. This article will review the various bioreporter/biosensor integrations of BLI and discuss how BLI is being applied towards a new visual understanding of biological processes within the living organism
    corecore