33,385 research outputs found
Seeing spin dynamics in atomic gases
The dynamics of internal spin, electronic orbital, and nuclear motion states
of atoms and molecules have preoccupied the atomic and molecular physics
community for decades. Increasingly, such dynamics are being examined within
many-body systems composed of atomic and molecular gases. Our findings
sometimes bear close relation to phenomena observed in condensed-matter
systems, while on other occasions they represent truly new areas of
investigation. I discuss several examples of spin dynamics that occur within
spinor Bose-Einstein gases, highlighting the advantages of spin-sensitive
imaging for understanding and utilizing such dynamics.Comment: Chapter in upcoming Review Volume entitled "From Atomic to Mesoscale:
The Role of Quantum Coherence in Systems of Various Complexities" from World
Scientifi
A Natural Supersymmetric Model with MeV Dark Matter
It has previously been proposed that annihilating dark matter particles with
MeV-scale masses could be responsible for the flux of 511 keV photons observed
from the region of the Galactic Bulge. The conventional wisdom, however, is
that it is very challenging to construct a viable particle physics model
containing MeV dark matter. In this letter, we challenge this conclusion by
describing a simple and natural supersymmetric model in which the lightest
supersymmetric particle naturally has a MeV-scale mass and the other
phenomenological properties required to generate the 511 keV emission. In
particular, the small ( ) effective couplings between dark
matter and the Standard Model fermions required in this scenario naturally lead
to radiative corrections that generate MeV-scale masses for both the dark
matter candidate and the mediator particle.Comment: 4 pages, 1 figure. v2: Small modification to discussion of spectru
- …