16,422 research outputs found

    How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility

    Full text link
    Recommendation systems are ubiquitous and impact many domains; they have the potential to influence product consumption, individuals' perceptions of the world, and life-altering decisions. These systems are often evaluated or trained with data from users already exposed to algorithmic recommendations; this creates a pernicious feedback loop. Using simulations, we demonstrate how using data confounded in this way homogenizes user behavior without increasing utility

    Constraints on the Interactions between Dark Matter and Baryons from the X-ray Quantum Calorimetry Experiment

    Get PDF
    Although the rocket-based X-ray Quantum Calorimetry (XQC) experiment was designed for X-ray spectroscopy, the minimal shielding of its calorimeters, its low atmospheric overburden, and its low-threshold detectors make it among the most sensitive instruments for detecting or constraining strong interactions between dark matter particles and baryons. We use Monte Carlo simulations to obtain the precise limits the XQC experiment places on spin-independent interactions between dark matter and baryons, improving upon earlier analytical estimates. We find that the XQC experiment rules out a wide range of nucleon-scattering cross sections centered around one barn for dark matter particles with masses between 0.01 and 10^5 GeV. Our analysis also provides new constraints on cases where only a fraction of the dark matter strongly interacts with baryons.Comment: 15 pages, 9 figures. Extended discussion of methodology, to appear in PR

    X-ray vs. Optical Variations in the Seyfert 1 Nucleus NGC 3516: A Puzzling Disconnectedness

    Full text link
    We present optical broadband (B and R) observations of the Seyfert 1 nucleus NGC 3516, obtained at Wise Observatory from March 1997 to March 2002, contemporaneously with X-ray 2-10 keV measurements with RXTE. With these data we increase the temporal baseline of this dataset to 5 years, more than triple to the coverage we have previously presented for this object. Analysis of the new data does not confirm the 100-day lag of X-ray behind optical variations, tentatively reported in our previous work. Indeed, excluding the first year's data, which drive the previous result, there is no significant correlation at any lag between the X-ray and optical bands. We also find no correlation at any lag between optical flux and various X-ray hardness ratios. We conclude that the close relation observed between the bands during the first year of our program was either a fluke, or perhaps the result of the exceptionally bright state of NGC 3516 in 1997, to which it has yet to return. Reviewing the results of published joint X-ray and UV/optical Seyfert monitoring programs, we speculate that there are at least two components or mechanisms contributing to the X-ray continuum emission up to 10 keV: a soft component that is correlated with UV/optical variations on timescales >1 day, and whose presence can be detected when the source is observed at low enough energies (about 1 keV), is unabsorbed, or is in a sufficiently bright phase; and a hard component whose variations are uncorrelated with the UV/optical.Comment: 9 pages, AJ, in pres

    Genomic plasticity and rapid host switching can promote the evolution of generalism : a case study in the zoonotic pathogen Campylobacter

    Get PDF
    This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/I02464X/1, the Medical Research Council (MRC) grants MR/M501608/1 and MR/L015080/1, and the Wellcome Trust grant 088786/C/09/Z. GM was supported by a NISCHR Health Research Fellowship (HF-14–13).Peer reviewedPublisher PD

    Mass transfer dynamics in double degenerate binary systems

    Full text link
    We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.Comment: 5 pages, 3 figures, for associated movie files, see http://pandora.jacobs-university.de/~mdan/WD_coalescences.htm, to appear in Journal of Physics Conference Proceedings for the 16th European White Dwarf Worksho

    Wormholes in String Theory

    Get PDF
    A wormhole is constructed by cutting and joining two spacetimes satisfying the low energy string equations with a dilaton field. In spacetimes described by the "string metric" the dilaton energy-momentum tensor need not satisfy the weak or dominant energy conditions. In the cases considered here the dilaton field violates these energy conditions and is the source of the exotic matter required to maintain the wormhole. There is also a surface stress-energy, that must be produced by additional matter, where the spacetimes are joined. It is shown that wormholes can be constructed for which this additional matter satisfies the weak and dominant energy conditions, so that it could be a form of "normal" matter. Charged dilaton wormholes with a coupling between the dilaton and the electromagnetic field that is more general than in string theory are also briefly discussed.Comment: 9 pages, LaTex, submitted to Phys. Rev.

    The Impact of Progenitor Mass Loss on the Dynamical and Spectral Evolution of Supernova Remnants

    Get PDF
    There is now substantial evidence that the progenitors of some core-collapse supernovae undergo enhanced or extreme mass loss prior to explosion. The imprint of this mass loss is observed in the spectra and dynamics of the expanding blastwave on timescales of days to years after core-collapse, and the effects on the spectral and dynamical evolution may linger long after the supernova has evolved into the remnant stage. In this paper, we present for the first time, largely self-consistent end-to-end simulations for the evolution of a massive star from the pre-main sequence, up to and through core collapse, and into the remnant phase. We present three models and compare and contrast how the progenitor mass loss history impacts the dynamics and spectral evolution of the supernovae and supernova remnants. We study a model which only includes steady mass loss, a model with enhanced mass loss over a period of \sim 5000 years prior to core-collapse, and a model with extreme mass loss over a period of \sim 500 years prior to core collapse. The models are not meant to address any particular supernova or supernova remnant, but rather to highlight the important role that the progenitor evolution plays in the observable qualities of supernovae and supernova remnants. Through comparisons of these three different progenitor evolution scenarios, we find that the mass loss in late stages (during and after core carbon burning) can have a profound impact on the dynamics and spectral evolution of the supernova remnant centuries after core-collapse.Comment: 18 pages, 11 figures; submitted to the Astrophysical Journa
    corecore