15 research outputs found

    Urokinase-mediated recruitment of myeloid-derived suppressor cells and their suppressive mechanisms are blocked by MUC1/sec

    Full text link
    The transmembrane isoform of mucin 1 (MUC1/TM) is a well-recognized tumor antigen, contributing to tumorigenesis and immune evasion. Although MUC1/TM has been correlated with malignancy, we have previously reported on antitumor properties and prevention of tumor development by a secreted splice variant of MUC1 (MUC1/sec). Because myeloid-derived suppressor cells (MDSCs) play a critical role in tumor-induced immunosuppression, we investigated their recruitment by tumor cells expressing either MUC1/TM or MUC1/sec. DA-3 tumor cells expressing MUC1/sec recruit dramatically lower levels of MDSCs, relative to MUC1/TM-expressing DA-3 cells. Because MUC1/sec was previously shown to down-regulate tumor expression of urokinase plasminogen activator (uPA), a protease linked to tumor aggressiveness and metastasis, the potential role of uPA in MDSC recruitment was investigated. Tumor-derived uPA is capable of recruiting MDSCs, and correlates with tumor development. In addition to diminishing recruitment of MDSCs, the effect of MUC1/sec on MDSC-suppressive mechanisms was investigated. MUC1/sec, or its unique immunoenhancing peptide, is capable of blocking expression of arginase 1 and production of reactive oxygen species in MDSCs, implicated in the suppression of T cells. These findings demonstrate a new mechanism of MDSC recruitment, and provide evidence that MUC1/sec has antitumor properties affecting MDSCs

    The Liver Is a Site for Tumor-Induced Myeloid-Derived Suppressor Cell Accumulation and Immunosuppression

    Full text link
    Tumor-induced immunosuppression plays a key role in tumor evasion of the immune system. A key cell population recognized as myeloid-derived suppressor cells (MDSC) contributes and helps orchestrate this immunosuppression. MDSC can interact with T cells, macrophages, and NK cells, to create an environment favorable for tumor progression. In various tumor models their presence at high levels has been reported in the bone marrow, blood, spleen, and tumor. We report for the first time that MDSC accumulate and home to the liver in addition to the other organs. Liver MDSC suppress T cells and accumulate to levels comparable to splenic MDSC. Additionally, hematopoiesis in the liver contributes to the dramatic expansion of MDSC in this organ. Furthermore, MDSC in the liver interact with macrophages, also known as Kupffer cells, and cause their up-regulation of PD-L1, a negative T cell costimulatory molecule. The liver is thus an organ where MDSC accumulate and can contribute to immunosuppression directly and indirectly. MDSC play a role in various pathological states in addition to cancer, and these results contribute to our understanding of their biology and interactions with immune-related cells
    corecore