14 research outputs found

    Testing quantum adiabaticity with quench echo

    Full text link
    Adiabaticity of quantum evolution is important in many settings. One example is the adiabatic quantum computation. Nevertheless, up to now, there is no effective method to test the adiabaticity of the evolution when the eigenenergies of the driven Hamiltonian are not known. We propose a simple method to check adiabaticity of a quantum process for an arbitrary quantum system. We further propose a operational method for finding a uniformly adiabatic quench scheme based on Kibble-Zurek mechanism for the case when the initial and the final Hamiltonians are given. This method should help in implementing adiabatic quantum computation.Comment: This is a new version. Some typos in the New Journal of Physics version have been correcte

    Dynamics of an inhomogeneous quantum phase transition

    Full text link
    We argue that in a second order quantum phase transition driven by an inhomogeneous quench density of quasiparticle excitations is suppressed when velocity at which a critical point propagates across a system falls below a threshold velocity equal to the Kibble-Zurek correlation length times the energy gap at freeze-out divided by â„Ź\hbar. This general prediction is supported by an analytic solution in the quantum Ising chain. Our results suggest, in particular, that adiabatic quantum computers can be made more adiabatic when operated in an "inhomogeneous" way.Comment: 7 pages; version to appear in a special issue of New J. Phy

    How to fix a broken symmetry: Quantum dynamics of symmetry restoration in a ferromagnetic Bose-Einstein condensate

    Full text link
    We discuss the dynamics of a quantum phase transition in a spin-1 Bose-Einstein condensate when it is driven from the magnetized broken-symmetry phase to the unmagnetized ``symmetric'' polar phase. We determine where the condensate goes out of equilibrium as it approaches the critical point, and compute the condensate magnetization at the critical point. This is done within a quantum Kibble-Zurek scheme traditionally employed in the context of symmetry-breaking quantum phase transitions. Then we study the influence of the nonequilibrium dynamics near a critical point on the condensate magnetization. In particular, when the quench stops at the critical point, nonlinear oscillations of magnetization occur. They are characterized by a period and an amplitude that are inversely proportional. If we keep driving the condensate far away from the critical point through the unmagnetized ``symmetric'' polar phase, the amplitude of magnetization oscillations slowly decreases reaching a non-zero asymptotic value. That process is described by the equation that can be mapped onto the classical mechanical problem of a particle moving under the influence of harmonic and ``anti-friction'' forces whose interplay leads to surprisingly simple fixed-amplitude oscillations. We obtain several scaling results relating the condensate magnetization to the quench rate, and verify numerically all analytical predictions.Comment: 15 pages, 11 figures, final version accepted in NJP (slight changes with respect to the former submission

    Causality and defect formation in the dynamics of an engineered quantum phase transition in a coupled binary Bose-Einstein condensate

    Full text link
    Continuous phase transitions occur in a wide range of physical systems, and provide a context for the study of non-equilibrium dynamics and the formation of topological defects. The Kibble-Zurek (KZ) mechanism predicts the scaling of the resulting density of defects as a function of the quench rate through a critical point, and this can provide an estimate of the critical exponents of a phase transition. In this work we extend our previous study of the miscible-immiscible phase transition of a binary Bose-Einstein condensate (BEC) composed of two hyperfine states in which the spin dynamics are confined to one dimension [J. Sabbatini et al., Phys. Rev. Lett. 107, 230402 (2011)]. The transition is engineered by controlling a Hamiltonian quench of the coupling amplitude of the two hyperfine states, and results in the formation of a random pattern of spatial domains. Using the numerical truncated Wigner phase space method, we show that in a ring BEC the number of domains formed in the phase transitions scales as predicted by the KZ theory. We also consider the same experiment performed with a harmonically trapped BEC, and investigate how the density inhomogeneity modifies the dynamics of the phase transition and the KZ scaling law for the number of domains. We then make use of the symmetry between inhomogeneous phase transitions in anisotropic systems, and an inhomogeneous quench in a homogeneous system, to engineer coupling quenches that allow us to quantify several aspects of inhomogeneous phase transitions. In particular, we quantify the effect of causality in the propagation of the phase transition front on the resulting formation of domain walls, and find indications that the density of defects is determined during the impulse to adiabatic transition after the crossing of the critical point.Comment: 23 pages, 10 figures. Minor corrections, typos, additional referenc

    Adiabatic dynamics of an inhomogeneous quantum phase transition: the case of z > 1 dynamical exponent

    Full text link
    We consider an inhomogeneous quantum phase transition across a multicritical point of the XY quantum spin chain. This is an example of a Lifshitz transition with a dynamical exponent z = 2. Just like in the case z = 1 considered in New J. Phys. 12, 055007 (2010) when a critical front propagates much faster than the maximal group velocity of quasiparticles vq, then the transition is effectively homogeneous: density of excitations obeys a generalized Kibble-Zurek mechanism and scales with the sixth root of the transition rate. However, unlike for z = 1, the inhomogeneous transition becomes adiabatic not below vq but a lower threshold velocity v', proportional to inhomogeneity of the transition, where the excitations are suppressed exponentially. Interestingly, the adiabatic threshold v' is nonzero despite vanishing minimal group velocity of low energy quasiparticles. In the adiabatic regime below v' the inhomogeneous transition can be used for efficient adiabatic quantum state preparation in a quantum simulator: the time required for the critical front to sweep across a chain of N spins adiabatically is merely linear in N, while the corresponding time for a homogeneous transition across the multicritical point scales with the sixth power of N. What is more, excitations after the adiabatic inhomogeneous transition, if any, are brushed away by the critical front to the end of the spin chain.Comment: 10 pages, 6 figures, improved version accepted in NJ

    Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate

    Full text link
    When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as Kibble-Zurek mechanism. Originally introduced in cosmology, it applies both to classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose-Einstein condensates via the Kibble-Zurek mechanism. We measure the power-law dependence of defects number with the quench time, and provide a check of the Kibble-Zurek scaling with the sonic horizon. These results provide a promising test bed for the determination of critical exponents in Bose-Einstein condensates.Comment: 7 pages, 4 figure

    Decoherence by engineered quantum baths

    Full text link
    We introduce, and determine decoherence for, a wide class of non-trivial quantum spin baths which embrace Ising, XY and Heisenberg universality classes coupled to a two-level system. For the XY and Ising universality classes we provide an exact expression for the decay of the loss of coherence beyond the case of a central spin coupled uniformly to all the spins of the baths which has been discussed so far in the literature. In the case of the Heisenberg spin bath we study the decoherence by means of the time-dependent density matrix renormalization group. We show how these baths can be engineered, by using atoms in optical lattices.Comment: 4 pages, 4 figure
    corecore