1,324 research outputs found

    Phasing of gravitational waves from inspiralling eccentric binaries

    Full text link
    We provide a method for analytically constructing high-accuracy templates for the gravitational wave signals emitted by compact binaries moving in inspiralling eccentric orbits. By contrast to the simpler problem of modeling the gravitational wave signals emitted by inspiralling {\it circular} orbits, which contain only two different time scales, namely those associated with the orbital motion and the radiation reaction, the case of {\it inspiralling eccentric} orbits involves {\it three different time scales}: orbital period, periastron precession and radiation-reaction time scales. By using an improved `method of variation of constants', we show how to combine these three time scales, without making the usual approximation of treating the radiative time scale as an adiabatic process. We explicitly implement our method at the 2.5PN post-Newtonian accuracy. Our final results can be viewed as computing new `post-adiabatic' short period contributions to the orbital phasing, or equivalently, new short-period contributions to the gravitational wave polarizations, h+,×h_{+,\times}, that should be explicitly added to the `post-Newtonian' expansion for h+,×h_{+,\times}, if one treats radiative effects on the orbital phasing of the latter in the usual adiabatic approximation. Our results should be of importance both for the LIGO/VIRGO/GEO network of ground based interferometric gravitational wave detectors (especially if Kozai oscillations turn out to be significant in globular cluster triplets), and for the future space-based interferometer LISA.Comment: 49 pages, 6 figures, high quality figures upon reques

    The Laser Astrometric Test of Relativity: Science, Technology, and Mission Design

    Full text link
    The Laser Astrometric Test of Relativity (LATOR) experiment is designed to explore general theory of relativity in the close proximity to the Sun -- the most intense gravitational environment in the solar system. Using independent time-series of highly accurate measurements of the Shapiro time-delay (interplanetary laser ranging accurate to 3 mm at 2 AU) and interferometric astrometry (accurate to 0.01 picoradian), LATOR will measure gravitational deflection of light by the solar gravity with accuracy of 1 part in a billion -- a factor ~30,000 better than currently available. LATOR will perform series of highly-accurate tests in its search for cosmological remnants of scalar field in the solar system. We present science, technology and mission design for the LATOR mission.Comment: 12 pages, 4 figures. To appear in the proceedings of the International Workshop "From Quantum to Cosmos: Fundamental Physics Research in Space", 21-24 May 2006, Warrenton, Virginia, USA http://physics.jpl.nasa.gov/quantum-to-cosmos

    Phenomenology of the Equivalence Principle with Light Scalars

    Get PDF
    Light scalar particles with couplings of sub-gravitational strength, which can generically be called 'dilatons', can produce violations of the equivalence principle. However, in order to understand experimental sensitivities one must know the coupling of these scalars to atomic systems. We report here on a study of the required couplings. We give a general Lagrangian with five independent dilaton parameters and calculate the "dilaton charge" of atomic systems for each of these. Two combinations are particularly important. One is due to the variations in the nuclear binding energy, with a sensitivity scaling with the atomic number as A1/3A^{-1/3}. The other is due to electromagnetism. We compare limits on the dilaton parameters from existing experiments.Comment: 5 page

    Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates

    Full text link
    Dimensional regularization is used to derive the equations of motion of two point masses in harmonic coordinates. At the third post-Newtonian (3PN) approximation, it is found that the dimensionally regularized equations of motion contain a pole part [proportional to 1/(d-3)] which diverges as the space dimension d tends to 3. It is proven that the pole part can be renormalized away by introducing suitable shifts of the two world-lines representing the point masses, and that the same shifts renormalize away the pole part of the "bulk" metric tensor g_munu(x). The ensuing, finite renormalized equations of motion are then found to belong to the general parametric equations of motion derived by an extended Hadamard regularization method, and to uniquely determine the heretofore unknown 3PN parameter lambda to be: lambda = - 1987/3080. This value is fully consistent with the recent determination of the equivalent 3PN static ambiguity parameter, omega_s = 0, by a dimensional-regularization derivation of the Hamiltonian in Arnowitt-Deser-Misner coordinates. Our work provides a new, powerful check of the consistency of the dimensional regularization method within the context of the classical gravitational interaction of point particles.Comment: 82 pages, LaTeX 2e, REVTeX 4, 8 PostScript figures, minor changes to reflect Phys. Rev. D versio

    Non-uniqueness of the third post-Newtonian binary point-mass dynamics

    Full text link
    It is shown that the recently found non-uniqueness of the third post-Newtonian binary point-mass ADM-Hamiltonian is related to the non-uniqueness at the third post-Newtonian approximation of the applied ADM-coordinate conditions.Comment: LaTeX, 2 pages, submitted to Phys. Rev.

    Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit interaction

    Full text link
    We derive Keplerian-type parametrization for the solution of post-Newtonian (PN) accurate conservative dynamics of spinning compact binaries moving in eccentric orbits. The PN accurate dynamics that we consider consists of the third post-Newtonian accurate conservative orbital dynamics influenced by the leading order spin effects, namely the leading order spin-orbit interactions. The orbital elements of the representation are explicitly given in terms of the conserved orbital energy, angular momentum and a quantity that characterizes the leading order spin-orbit interactions in Arnowitt, Deser, and Misner-type coordinates. Our parametric solution is applicable in the following two distinct cases: (i) the binary consists of equal mass compact objects, having two arbitrary spins, and (ii) the binary consists of compact objects of arbitrary mass, where only one of them is spinning with an arbitrary spin. As an application of our parametrization, we present gravitational wave polarizations, whose amplitudes are restricted to the leading quadrupolar order, suitable to describe gravitational radiation from spinning compact binaries moving in eccentric orbits. The present parametrization will be required to construct `ready to use' reference templates for gravitational waves from spinning compact binaries in inspiralling eccentric orbits. Our parametric solution for the post-Newtonian accurate conservative dynamics of spinning compact binaries clearly indicates, for the cases considered, the absence of chaos in these systems. Finally, we note that our parametrization provides the first step in deriving a fully second post-Newtonian accurate `timing formula', that may be useful for the radio observations of relativistic binary pulsars like J0737-3039.Comment: 18 pages, accepted by Phys. Rev.

    On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation

    Get PDF
    We discuss the analytical determination of the location of the Last Stable Orbit (LSO) in circular general relativistic orbits of two point masses. We use several different ``resummation methods'' (including new ones) based on the consideration of gauge-invariant functions, and compare the results they give at the third post-Newtonian (3PN) approximation of general relativity. Our treatment is based on the 3PN Hamiltonian of Jaranowski and Sch\"afer. One of the new methods we introduce is based on the consideration of the (invariant) function linking the angular momentum and the angular frequency. We also generalize the ``effective one-body'' approach of Buonanno and Damour by introducing a non-minimal (i.e. ``non-geodesic'') effective dynamics at the 3PN level. We find that the location of the LSO sensitively depends on the (currently unknown) value of the dimensionless quantity \oms which parametrizes a certain regularization ambiguity of the 3PN dynamics. We find, however, that all the analytical methods we use numerically agree between themselves if the value of this parameter is \oms\simeq-9. This suggests that the correct value of \oms is near -9 (the precise value \oms^*\equiv-{47/3}+{41/64}\pi^2=-9.3439... seems to play a special role). If this is the case, we then show how to further improve the analytical determination of various LSO quantities by using a ``Shanks'' transformation to accelerate the convergence of the successive (already resummed) PN estimates.Comment: REVTeX, 25 pages, 3 figures, submitted to Phys. Rev.

    Third post-Newtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic-coordinate and ADM-Hamiltonian formalisms

    Get PDF
    A Lagrangian from which derive the third post-Newtonian (3PN) equations of motion of compact binaries (neglecting the radiation reaction damping) is obtained. The 3PN equations of motion were computed previously by Blanchet and Faye in harmonic coordinates. The Lagrangian depends on the harmonic-coordinate positions, velocities and accelerations of the two bodies. At the 3PN order, the appearance of one undetermined physical parameter \lambda reflects an incompleteness of the point-mass regularization used when deriving the equations of motion. In addition the Lagrangian involves two unphysical (gauge-dependent) constants r'_1 and r'_2 parametrizing some logarithmic terms. The expressions of the ten Noetherian conserved quantities, associated with the invariance of the Lagrangian under the Poincar\'e group, are computed. By performing an infinitesimal ``contact'' transformation of the motion, we prove that the 3PN harmonic-coordinate Lagrangian is physically equivalent to the 3PN Arnowitt-Deser-Misner Hamiltonian obtained recently by Damour, Jaranowski and Sch\"afer.Comment: 30 pages, to appear in Classical and Quantum Gravit

    Improving LLR Tests of Gravitational Theory

    Full text link
    Accurate analysis of precision ranges to the Moon has provided several tests of gravitational theory including the Equivalence Principle, geodetic precession, parameterized post-Newtonian (PPN) parameters γ\gamma and β\beta, and the constancy of the gravitational constant {\it G}. Since the beginning of the experiment in 1969, the uncertainties of these tests have decreased considerably as data accuracies have improved and data time span has lengthened. We are exploring the modeling improvements necessary to proceed from cm to mm range accuracies enabled by the new Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) currently under development in New Mexico. This facility will be able to make a significant contribution to the solar system tests of fundamental and gravitational physics. In particular, the Weak and Strong Equivalence Principle tests would have a sensitivity approaching 1014^{-14}, yielding sensitivity for the SEP violation parameter η\eta of 3×105\sim 3\times 10^{-5}, v2/c2v^2/c^2 general relativistic effects would be tested to better than 0.1%, and measurements of the relative change in the gravitational constant, G˙/G\dot{G}/G, would be 0.1\sim0.1% the inverse age of the universe. Having this expected accuracy in mind, we discusses the current techniques, methods and existing physical models used to process the LLR data. We also identify the challenges for modeling and data analysis that the LLR community faces today in order to take full advantage of the new APOLLO ranging station.Comment: 15 pages, 3 figures, talk presented at 2003 NASA/JPL Workshop on Fundamental Physics in Space, April 14-16, 2003, Oxnard, C

    Testing gravity to second post-Newtonian order: a field-theory approach

    Full text link
    A new, field-theory-based framework for discussing and interpreting tests of gravity, notably at the second post-Newtonian (2PN) level, is introduced. Contrary to previous frameworks which attempted at parametrizing any conceivable deviation from general relativity, we focus on the best motivated class of models, in which gravity is mediated by a tensor field together with one or several scalar fields. The 2PN approximation of these "tensor-multi-scalar" theories is obtained thanks to a diagrammatic expansion which allows us to compute the Lagrangian describing the motion of N bodies. In contrast with previous studies which had to introduce many phenomenological parameters, we find that the 2PN deviations from general relativity can be fully described by only two new 2PN parameters, epsilon and zeta, beyond the usual (Eddington) 1PN parameters beta and gamma. It follows from the basic tenets of field theory, notably the absence of negative-energy excitations, that (beta-1), epsilon and zeta (as well as any new parameter entering higher post-Newtonian orders) must tend to zero with (gamma-1). It is also found that epsilon and zeta do not enter the 2PN equations of motion of light. Therefore, light-deflection or time-delay experiments cannot probe any theoretically motivated 2PN deviation from general relativity, but they can give a clean access to (gamma-1), which is of greatest significance as it measures the basic coupling strength of matter to the scalar fields. Because of the importance of self-gravity effects in neutron stars, binary-pulsar experiments are found to constitute a unique testing ground for the 2PN structure of gravity. A simplified analysis of four binary pulsars already leads to significant constraints: |epsilon| < 7x10^-2, |zeta| < 6x10^-3.Comment: 63 pages, 11 figures.ps.tar.gz.uu, REVTeX 3.
    corecore