58 research outputs found

    Weak-scale phenomenology of models with gauge-mediated supersymmetry breaking

    Full text link
    We study in some detail the spectral phenomenology of models in which supersymmetry is dynamically broken and transmitted to the supersymmetric partners of the quarks, leptons and gauge bosons, and the Higgs bosons themselves, via the usual gauge interactions. We elucidate the parameter space of what we consider to be the minimal model, and explore the regions which give rise to consistent radiative electroweak symmetry breaking. We include the weak-scale threshold corrections, and show how they considerably reduce the scale dependence of the results. We examine the sensitivity of our results to unknown higher-order messenger-sector corrections. We compute the superpartner spectrum across the entire parameter space, and compare it to that of the minimal supergravity-inspired model. We delineate the regions where the lightest neutralino or tau slepton is the next-to-lightest supersymmetric particle, and compute the lifetime and branching ratios of the NLSP. In contrast to the minimal supergravity-inspired model, we find that the lightest neutralino can have a large Higgsino component, of order 50%. Nevertheless, the neutralino branching fraction to the gravitino and the light Higgs boson remains small, < 10^{-4}, so the observation of such a decay would point to a non-minimal Higgs sector.Comment: 22 pages, 16 figures, published versio

    Radiative Corrections to Neutralino and Chargino Masses in the Minimal Supersymmetric Model

    Full text link
    We determine the neutralino and chargino masses in the MSSM at one-loop. We perform a Feynman diagram calculation in the on-shell renormalization scheme, including quark/squark and lepton/slepton loops. We find generically the corrections are of order 6%. For a 20 GeV neutralino the corrections can be larger than 20%. The corrections change the region of μ, M2, tanβ\mu,\ M_2,\ \tan\beta parameter space which is ruled out by LEP data. We demonstrate that, e.g., for a given μ\mu and tanβ\tan\beta the lower limit on the parameter M2M_2 can shift by 20 GeV.Comment: 11 pages, JHU-TIPAC-930030, PURD-TH-93-13, uses epsf.sty, 6 uuencoded postscript figures, added one sentence and a referenc

    Anomalous prompt photon production in hadronic collisions at low-xTx_T

    Full text link
    We investigate the discrepancy that exists at low-xT=2pT/sx_T=2p_T/\sqrt{s} between the next--to--leading order QCD calculations of prompt photon production and the measured cross section. The central values of the measured cross section are of order 100\% larger than QCD predictions in this region. It has been suggested that the bremsstrahlung contribution may account for this discrepancy. The quark fragmentation function Dγ/q(z)D_{\gamma/q}(z) has not been measured and an exactly known asymptotic form is normally used in calculations. We examine the effect of much larger fragmentation functions on the QCD predictions. After illustrating the effect of the large fragmentation functions in some detail for recent CDF data at s\sqrt{s}=1.8~TeV, we perform a χ2\chi^2 fit to 8 prompt photon data sets ranging in CMS energy from 24~GeV to 1.8~TeV. While a large fragmentation function normalization may prove to play an important role in resolving the discrepancy, the present theoretical and experimental uncertainties prevent any definite normalization value from being determined.Comment: 14 pages, LBL-33122 and UCB-PTH-92/38. 13 figures available by email, specify postscript or topdrawe

    Radiative corrections to the Higgs boson decay rate Γ(HZZ)\Gamma(H\rightarrow ZZ) in the minimal supersymmetric model

    Full text link
    We consider radiative corrections to the decay rate Γ(HZZ)\Gamma(H\rightarrow ZZ) of the heavy {\it CP}-even Higgs boson of the minimal supersymmetric model to two ZZ bosons. We perform a one loop Feynman diagram calculation in the on-mass-shell renormalization scheme, and include the third generation of quarks and squarks. The tree level rate is suppressed by a mixing angle factor and decreases as 1/MH1/M_H for large MHM_H. The corrected rate overcomes this suppression and increases with MHM_H for MH>500M_H > 500~GeV. The corrections can be very large and depend in detail on the top squark masses and AA-term, as well as the supersymmetric Higgs mass parameter μ\mu.Comment: 22 pages, 9 figures available from authors, UCB-PTH-92/23 and LBL-3249

    Supersymmetric Electroweak Corrections to Heavier Top Squark Decay into Lighter Top Squark and Neutral Higgs Boson

    Get PDF
    We calculate the Yukawa corrections of order O(αewmt(b)2/mW2){\cal O}(\alpha_{ew}m_{t(b)}^2/m_W^2), O(αewmt(b)3/mW3){\cal O}(\alpha_{ew}m_{t(b)}^3/m_W^3) and O(αewmt(b)4/mW4){\cal O}(\alpha_{ew}m_{t(b)}^4/m_W^4) to the widths of the decays t~2t~1+(h0,H0,A0)\tilde t_2\to \tilde t_1 + (h^0,H^0,A^0) in the Minimal Supersymmetric Standard Model, and perform a detailed numerical analysis. We also compare the results with the ones presented in an earlier literature, where the O(αs){\cal O}(\alpha_{s}) SUSY-QCD corrections to the same three decay processes have been calculated. Our numerical results show that for the decays t~2t~1+h0\tilde t_2\to \tilde t_1 + h^{0}, t~2t~1+H0\tilde t_2\to \tilde t_1 + H^{0}, the Yukawa corrections are significant in most of the parameter range, which can reach a few ten percent, and for the decay t~2t~1+A0\tilde t_2\to\tilde t_1 + A^{0}, the Yukawa corrections are relatively smaller, which are only a few percent. The numerical calculations also show that using the running quark masses and the running trilinear coupling AtA_t, which include the QCD, SUSY-QCD, SUSY-Electroweak effects and resume all high order (tanβ\tan\beta)-enhanced effects, can vastly improve the convergence of the perturbation expansion. We also discuss the effects of the running of the higgsino mass parameter μ\mu on the corrections, and find that they are significant, too, especially for large tanβ\tan\beta.Comment: 37 pages, 19 eps figure
    corecore