19 research outputs found

    Phase-plane analysis of Friedmann-Robertson-Walker cosmologies in Brans-Dicke gravity

    Get PDF
    We present an autonomous phase-plane describing the evolution of Friedmann-Robertson-Walker models containing a perfect fluid (with barotropic index gamma) in Brans-Dicke gravity (with Brans-Dicke parameter omega). We find self-similar fixed points corresponding to Nariai's power-law solutions for spatially flat models and curvature-scaling solutions for curved models. At infinite values of the phase-plane variables we recover O'Hanlon and Tupper's vacuum solutions for spatially flat models and the Milne universe for negative spatial curvature. We find conditions for the existence and stability of these critical points and describe the qualitative evolution in all regions of the (omega,gamma) parameter space for 0-3/2. We show that the condition for inflation in Brans-Dicke gravity is always stronger than the general relativistic condition, gamma<2/3.Comment: 24 pages, including 9 figures, LaTe

    Self-similar cosmological solutions with a non-minimally coupled scalar field

    Get PDF
    We present self-similar cosmological solutions for a barotropic fluid plus scalar field with Brans-Dicke-type coupling to the spacetime curvature and an arbitrary power-law potential energy. We identify all the fixed points in the autonomous phase-plane, including a scaling solution where the fluid density scales with the scalar field's kinetic and potential energy. This is related by a conformal transformation to a scaling solution for a scalar field with exponential potential minimally coupled to the spacetime curvature, but non-minimally coupled to the barotropic fluid. Radiation is automatically decoupled from the scalar field, but energy transfer between the field and non-relativistic dark matter can lead to a change to an accelerated expansion at late times in the Einstein frame. The scalar field density can mimic a cosmological constant even for steep potentials in the strong coupling limit.Comment: 10 pages, 1 figure, revtex version to appear in Phys Rev D, references adde

    A systematic approach to biomarker discovery; Preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers"

    Get PDF
    The International Society for the Biological Therapy of Cancer (iSBTc) has initiated in collaboration with the United States Food and Drug Administration (FDA) a programmatic look at innovative avenues for the identification of relevant parameters to assist clinical and basic scientists who study the natural course of host/tumor interactions or their response to immune manipulation. The task force has two primary goals: 1) identify best practices of standardized and validated immune monitoring procedures and assays to promote inter-trial comparisons and 2) develop strategies for the identification of novel biomarkers that may enhance our understating of principles governing human cancer immune biology and, consequently, implement their clinical application. Two working groups were created that will report the developed best practices at an NCI/FDA/iSBTc sponsored workshop tied to the annual meeting of the iSBTc to be held in Washington DC in the Fall of 2009. This foreword provides an overview of the task force and invites feedback from readers that might be incorporated in the discussions and in the final document

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase

    Get PDF
    The complement cascade is crucial for clearance and control of invading pathogens, and as such is a key target for pathogen mediated host modulation. C3 is the central molecule of the complement cascade, and plays a vital role in opsonization of bacteria and recruitment of neutrophils to the site of infection. Streptococcal species have evolved multiple mechanisms to disrupt complement-mediated innate immunity, among which ScpA (C5a peptidase), a C5a inactivating enzyme, is widely conserved. Here we demonstrate for the first time that pyogenic streptococcal species are capable of cleaving C3, and identify C3 and C3a as novel substrates for the streptococcal ScpA, which are functionally inactivated as a result of cleavage 7 amino acids upstream of the natural C3 convertase. Cleavage of C3a by ScpA resulted in disruption of human neutrophil activation, phagocytosis and chemotaxis, while cleavage of C3 generated abnormally-sized C3a and C3b moieties with impaired function, in particular reducing C3 deposition on the bacterial surface. Despite clear effects on human complement, expression of ScpA reduced clearance of group A streptococci in vivo in wildtype and C5 deficient mice, and promoted systemic bacterial dissemination in mice that lacked both C3 and C5, suggesting an additional complement-independent role for ScpA in streptococcal pathogenesis. ScpA was shown to mediate streptococcal adhesion to both human epithelial and endothelial cells, consistent with a role in promoting bacterial invasion within the host. Taken together, these data show that ScpA is a multi-functional virulence factor with both complement-dependent and independent roles in streptococcal pathogenesis

    Three’s Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets

    Get PDF
    HD 3167 is a bright (V = 8.9), nearby K0 star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02±0.38 MEarth for HD 3167 b, a hot super-Earth with a likely rocky composition (ρb = 5.60+2.15-1.43g cm-3), and 9.80+1.30-1.24 MEarth for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (ρc = 1.97+0.94-0.59 g cm-3). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509+/-0.045 d (between planets b and c) and a minimum mass of 6.90±0.71 MEarth. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.3 degrees as we do not observe transits of planet d. From 1.3-40 degrees, there are viewing geometries invoking special nodal configurations which result in planet d not transiting some fraction of the time. From 40-60 degrees, Kozai-Lidov oscillations increase the system's instability, but it can remain stable for up to 100Myr. Above 60 degrees, the system is unstable. HD 3167 promises to be a fruitful system for further study and a preview of the many exciting systems expected from the upcoming NASATESS mission.Publisher PDFPeer reviewe
    corecore