67 research outputs found
Modeling the Scientific Dimension of Academic Conferences
AbstractThe rapid spread of the Internet and the growing trend towards research are the leading factors and strong springboards, for the Industry of conference organizations, to proceed with further development. With the increase of shareholding in organizing events, the environment has become very complex. The Conference Organizing Committee is challenged to define a wide range of factors, in order to better serve the needs and objectives of the Conference.The main topic of this research is the study and modeling of the scientific dimension of Academic Conferences. We studied and recorded the basic procedures that govern the organization of scientific conferences. These are the procedures that affect the way that scientific conferences are conducted and eventually of course, the success or failure of those. Our research is engaged in the scientific aspect of these conferences, as the majority of the participants are scientifically renowned academics
The impact of patterns in linkage disequilibrium and sequencing quality on the imprint of balancing selection
Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima\u27s D, HKA, Dng, BetaScan, and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequencing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures otherwise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization of variants under selection, particularly in complex regions
5 Year-long Monitoring of Barkley Canyon Cold-seeps with the Internet Operated Deep-sea Crawler “Wally”
Despite the technological advances of the last decades (e.g. ROVs, AUVs, cabled observatories), our knowledge of most deep-sea environments is still strongly limited by spatio-temporal sampling and observational capabilities. The novel Internet Operated Deep-Sea Crawler technology can provide high-frequency, multi-sensor data, during long-term deployments, 24/7 communication with researchers and broader spatial coverage (i.e. mobile platform) than fixed instrument installations. The crawler “Wally” is deployed at the Barkley Canyon methane hydrates site (NE Pacific, Canada; ~890 m depth) and connected to the Ocean Networks Canada NEPTUNE cabled observatory network (ONC; www.oceannetworks.ca). Here we present the environmental and biological datasets obtained from Wally instruments and cameras, during the first deployment phase (September 2010 to January 2015), as well as new features and preliminary results obtained since it was re-deployed (May 2016 – present). In addition to data provided by the standard payload of the crawler (i.e. ADCP, CTD, methane sensor, turbidity sensor and fluorometer), the hydrates community was video-monitored at different frequencies and timespans. Photomosaics were generated at two distinct locations, in order to map chemosynthetic bacterial mats and vesicomyid clam colonies covering the ~2-3 m high hydrate mounds, and document their temporal dynamics. The crawler followed the development of a deep-sea shell taphonomic experiment aiming to quantify biogenic carbon fluxes at the hydrates environment. The composition and diel activity patterns of the hydrates megafaunal community were studied with the use of linear video-transects conducted from February 2013 to April 2014. Since the summer of 2016, video-frames recorded at different locations of the site are analyzed for a biodiversity study and photomosaicing of the hydrate mounds continues, with 3D modelling of the mound structures also available as a new feature of the crawler deployed in May 2016. All data are archived in real-time and can be accessed online on the Ocean Networks Canada database. As deep-sea crawler technology and similar mobile, benthic platform technologies progress towards full operational autonomy, they will provide an even greater capacity for future monitoring and understanding of dynamic, extreme environments such as methane hydrate fields
- …