5 research outputs found

    Neuronal GQ Structures in Neurodegeneration

    Get PDF
    This study investigates protein nucleic acid interactions between various proteins and G quadruplex (GQ) forming messenger RNAs (mRNAs) in human neurological disorders. GQ structures are formed in DNA/RNA, when four guanine residues form planar tetrads stabilized by Hoogsteen base pairing, that stack forming a GQ structure stabilized by potassium ions. These GQ structures are targeted by the arginine-glycine-glycine (RGG) repeat domain containing RNA-binding domain. Three RGG domain containing RNA-binding proteins, all of which have been implicated in neurological disorders, and their interactions with GQ forming mRNAs, were investigated in this study: fused in sarcoma (FUS), fragile X mental retardation protein (FMRP), and hnRNP Q1. Initially we analyzed the interactions between FUS and two neuronal GQ forming mRNAs, Shank1 and PSD-95 mRNAs. Our results indicate that FUS binds these GQ structures with high affinity and specificity. This is the first study showing that FUS recognizes the GQ RNA structure in neuronal mRNA targets, suggesting a role for localization of the mRNA to the synapse. FMRP, whose loss of expression leads to the fragile X syndrome, is a translation regulator that has been shown to bind to GQ mRNA structures. Here we identified another FMRP GQ forming mRNA target, SMNDC1 mRNA, and characterized its interactions with FMRP. FUS has also been implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and more recently it has been shown that an expansion of (G4C2) repeats within the C9ORF72 is causative of ALS/FTD. We and others have shown that these repeats form GQ structures and here we demonstrate that both FMRP and FUS bind these repeats, suggesting a possible mechanism by which the repeat expansion leads to the sequestration of RNA binding proteins. Finally, we demonstrate that hnRNP Q1, a protein involved in mRNA processing, recognizes a GQ structure in GAP43 mRNA. This study increases our understanding of the biological functions of the mRNA GQ structure and of their role in neurodegenerative diseases

    FUS Recognizes G Quadruplex Structures Within Neuronal mRNAs

    No full text
    Fused in sarcoma (FUS), identified as the heterogeneous nuclear ribonuclear protein P2, is expressed in neuronal and non-neuronal tissue, and among other functions, has been implicated in messenger RNA (mRNA) transport and possibly local translation regulation. Although FUS is mainly localized to the nucleus, in the neurons FUS has also been shown to localize to the post-synaptic density, as well as to the pre-synapse. Additionally, the FUS deletion in cultured hippocampal cells results in abnormal spine and dendrite morphology. Thus, FUS may play a role in synaptic function regulation, mRNA localization, and local translation. Many dendritic mRNAs have been shown to form G quadruplex structures in their 3′-untranslated region (3′-UTR). Since FUS contains three arginine-glycine-glycine (RGG) boxes, an RNA binding domain shown to bind with high affinity and specificity to RNA G quadruplex structures, in this study we hypothesized that FUS recognizes these structural elements in its neuronal mRNA targets. Two neuronal mRNAs found in the pre- and post-synapse are the post-synaptic density protein 95 (PSD-95) and Shank1 mRNAs, which encode for proteins involved in synaptic plasticity, maintenance, and function. These mRNAs have been shown to form 3′-UTR G quadruplex structures and were also enriched in FUS hydrogels. In this study, we used native gel electrophoresis and steady-state fluorescence spectroscopy to demonstrate specific nanomolar binding of the FUS C-terminal RGG box and of full-length FUS to the RNA G quadruplex structures formed in the 3′-UTR of PSD-95 and Shank1a mRNAs. These results point toward a novel mechanism by which FUS targets neuronal mRNA and given that these PSD-95 and Shank1 3′-UTR G quadruplex structures are also targeted by the fragile X mental retardation protein (FMRP), they raise the possibility that FUS and FMRP might work together to regulate the translation of these neuronal mRNA targets

    hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    No full text
    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5\u27 untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1-mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development

    hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43

    No full text
    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development
    corecore