10 research outputs found

    Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review.

    Get PDF
    OBJECTIVE: To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties. DESIGN: Systematic review. DATA SOURCES: PubMed from 1 January 2018 to 31 December 2019. ELIGIBILITY CRITERIA: Articles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes. REVIEW METHODS: Methodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall). RESULTS: 152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively. CONCLUSION: Most studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42019161764

    Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review.

    Get PDF
    BACKGROUND: Describe and evaluate the methodological conduct of prognostic prediction models developed using machine learning methods in oncology. METHODS: We conducted a systematic review in MEDLINE and Embase between 01/01/2019 and 05/09/2019, for studies developing a prognostic prediction model using machine learning methods in oncology. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, Prediction model Risk Of Bias ASsessment Tool (PROBAST) and CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) to assess the methodological conduct of included publications. Results were summarised by modelling type: regression-, non-regression-based and ensemble machine learning models. RESULTS: Sixty-two publications met inclusion criteria developing 152 models across all publications. Forty-two models were regression-based, 71 were non-regression-based and 39 were ensemble models. A median of 647 individuals (IQR: 203 to 4059) and 195 events (IQR: 38 to 1269) were used for model development, and 553 individuals (IQR: 69 to 3069) and 50 events (IQR: 17.5 to 326.5) for model validation. A higher number of events per predictor was used for developing regression-based models (median: 8, IQR: 7.1 to 23.5), compared to alternative machine learning (median: 3.4, IQR: 1.1 to 19.1) and ensemble models (median: 1.7, IQR: 1.1 to 6). Sample size was rarely justified (n = 5/62; 8%). Some or all continuous predictors were categorised before modelling in 24 studies (39%). 46% (n = 24/62) of models reporting predictor selection before modelling used univariable analyses, and common method across all modelling types. Ten out of 24 models for time-to-event outcomes accounted for censoring (42%). A split sample approach was the most popular method for internal validation (n = 25/62, 40%). Calibration was reported in 11 studies. Less than half of models were reported or made available. CONCLUSIONS: The methodological conduct of machine learning based clinical prediction models is poor. Guidance is urgently needed, with increased awareness and education of minimum prediction modelling standards. Particular focus is needed on sample size estimation, development and validation analysis methods, and ensuring the model is available for independent validation, to improve quality of machine learning based clinical prediction models

    Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis

    Get PDF
    OBJECTIVE: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19. DESIGN: Two stage individual participant data meta-analysis. SETTING: Secondary and tertiary care. PARTICIPANTS: 46 914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021. DATA SOURCES: Multiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published in The BMJ, and through PROSPERO, reference checking, and expert knowledge. MODEL SELECTION AND ELIGIBILITY CRITERIA: Prognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor. METHODS: Eight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. MAIN OUTCOME MEASURES: 30 day mortality or in-hospital mortality. RESULTS: Datasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al's model (0.96, 0.59 to 1.55, 0.21 to 4.28). CONCLUSION: The prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care

    Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review

    No full text
    Objective To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties. Design Systematic review. Data sources PubMed from 1 January 2018 to 31 December 2019. Eligibility criteria Articles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes. Review methods Methodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall). Results 152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively. Conclusion Most studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice. Systematic review registration PROSPERO CRD42019161764

    Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review

    No full text
    Background While many studies have consistently found incomplete reporting of regression-based prediction model studies, evidence is lacking for machine learning-based prediction model studies. We aim to systematically review the adherence of Machine Learning (ML)-based prediction model studies to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement. Methods We included articles reporting on development or external validation of a multivariable prediction model (either diagnostic or prognostic) developed using supervised ML for individualized predictions across all medical fields. We searched PubMed from 1 January 2018 to 31 December 2019. Data extraction was performed using the 22-item checklist for reporting of prediction model studies (www.TRIPOD-statement.org). We measured the overall adherence per article and per TRIPOD item. Results Our search identified 24,814 articles, of which 152 articles were included: 94 (61.8%) prognostic and 58 (38.2%) diagnostic prediction model studies. Overall, articles adhered to a median of 38.7% (IQR 31.0–46.4%) of TRIPOD items. No article fully adhered to complete reporting of the abstract and very few reported the flow of participants (3.9%, 95% CI 1.8 to 8.3), appropriate title (4.6%, 95% CI 2.2 to 9.2), blinding of predictors (4.6%, 95% CI 2.2 to 9.2), model specification (5.2%, 95% CI 2.4 to 10.8), and model’s predictive performance (5.9%, 95% CI 3.1 to 10.9). There was often complete reporting of source of data (98.0%, 95% CI 94.4 to 99.3) and interpretation of the results (94.7%, 95% CI 90.0 to 97.3). Conclusion Similar to prediction model studies developed using conventional regression-based techniques, the completeness of reporting is poor. Essential information to decide to use the model (i.e. model specification and its performance) is rarely reported. However, some items and sub-items of TRIPOD might be less suitable for ML-based prediction model studies and thus, TRIPOD requires extensions. Overall, there is an urgent need to improve the reporting quality and usability of research to avoid research waste. Systematic review registration PROSPERO, CRD42019161764

    Risk of bias of prognostic models developed using machine learning: a systematic review in oncology.

    Get PDF
    BACKGROUND: Prognostic models are used widely in the oncology domain to guide medical decision-making. Little is known about the risk of bias of prognostic models developed using machine learning and the barriers to their clinical uptake in the oncology domain. METHODS: We conducted a systematic review and searched MEDLINE and EMBASE databases for oncology-related studies developing a prognostic model using machine learning methods published between 01/01/2019 and 05/09/2019. The primary outcome was risk of bias, judged using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). We described risk of bias overall and for each domain, by development and validation analyses separately. RESULTS: We included 62 publications (48 development-only; 14 development with validation). 152 models were developed across all publications and 37 models were validated. 84% (95% CI: 77 to 89) of developed models and 51% (95% CI: 35 to 67) of validated models were at overall high risk of bias. Bias introduced in the analysis was the largest contributor to the overall risk of bias judgement for model development and validation. 123 (81%, 95% CI: 73.8 to 86.4) developed models and 19 (51%, 95% CI: 35.1 to 67.3) validated models were at high risk of bias due to their analysis, mostly due to shortcomings in the analysis including insufficient sample size and split-sample internal validation. CONCLUSIONS: The quality of machine learning based prognostic models in the oncology domain is poor and most models have a high risk of bias, contraindicating their use in clinical practice. Adherence to better standards is urgently needed, with a focus on sample size estimation and analysis methods, to improve the quality of these models

    Risk of bias of prognostic models developed using machine learning: a systematic review in oncology

    No full text
    Background Prognostic models are used widely in the oncology domain to guide medical decision-making. Little is known about the risk of bias of prognostic models developed using machine learning and the barriers to their clinical uptake in the oncology domain. Methods We conducted a systematic review and searched MEDLINE and EMBASE databases for oncology-related studies developing a prognostic model using machine learning methods published between 01/01/2019 and 05/09/2019. The primary outcome was risk of bias, judged using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). We described risk of bias overall and for each domain, by development and validation analyses separately. Results We included 62 publications (48 development-only; 14 development with validation). 152 models were developed across all publications and 37 models were validated. 84% (95% CI: 77 to 89) of developed models and 51% (95% CI: 35 to 67) of validated models were at overall high risk of bias. Bias introduced in the analysis was the largest contributor to the overall risk of bias judgement for model development and validation. 123 (81%, 95% CI: 73.8 to 86.4) developed models and 19 (51%, 95% CI: 35.1 to 67.3) validated models were at high risk of bias due to their analysis, mostly due to shortcomings in the analysis including insufficient sample size and split-sample internal validation. Conclusions The quality of machine learning based prognostic models in the oncology domain is poor and most models have a high risk of bias, contraindicating their use in clinical practice. Adherence to better standards is urgently needed, with a focus on sample size estimation and analysis methods, to improve the quality of these models

    Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review

    No full text
    Background Describe and evaluate the methodological conduct of prognostic prediction models developed using machine learning methods in oncology. Methods We conducted a systematic review in MEDLINE and Embase between 01/01/2019 and 05/09/2019, for studies developing a prognostic prediction model using machine learning methods in oncology. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, Prediction model Risk Of Bias ASsessment Tool (PROBAST) and CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) to assess the methodological conduct of included publications. Results were summarised by modelling type: regression-, non-regression-based and ensemble machine learning models. Results Sixty-two publications met inclusion criteria developing 152 models across all publications. Forty-two models were regression-based, 71 were non-regression-based and 39 were ensemble models. A median of 647 individuals (IQR: 203 to 4059) and 195 events (IQR: 38 to 1269) were used for model development, and 553 individuals (IQR: 69 to 3069) and 50 events (IQR: 17.5 to 326.5) for model validation. A higher number of events per predictor was used for developing regression-based models (median: 8, IQR: 7.1 to 23.5), compared to alternative machine learning (median: 3.4, IQR: 1.1 to 19.1) and ensemble models (median: 1.7, IQR: 1.1 to 6). Sample size was rarely justified (n = 5/62; 8%). Some or all continuous predictors were categorised before modelling in 24 studies (39%). 46% (n = 24/62) of models reporting predictor selection before modelling used univariable analyses, and common method across all modelling types. Ten out of 24 models for time-to-event outcomes accounted for censoring (42%). A split sample approach was the most popular method for internal validation (n = 25/62, 40%). Calibration was reported in 11 studies. Less than half of models were reported or made available. Conclusions The methodological conduct of machine learning based clinical prediction models is poor. Guidance is urgently needed, with increased awareness and education of minimum prediction modelling standards. Particular focus is needed on sample size estimation, development and validation analysis methods, and ensuring the model is available for independent validation, to improve quality of machine learning based clinical prediction models
    corecore