8,025 research outputs found
Design of an integrated shallow water wave experiment
The experimental design and instrumentation for an integrated shallow-water surface gravity wave experiment is discussed. The experiment required the measurement of the water surface elevation, meteorological parameters, and directional spectra at a number of locations on a shallow lake. In addition, to acquire data under a wide range of conditions, an experimental period of three years was required. A system of telephone and radio modem links were installed to enable real-time monitoring of instrument performance at eight separate measurement locations on the lake. This system also enabled logging sessions to be optimized to ensure the maximum possible data return from this extended experimentIEEE Oceanic Engineering Societ
Decoherence Rates in Large Scale Quantum Computers and Macroscopic Systems
Markovian regime decoherence effects in quantum computers are studied in
terms of the fidelity for the situation where the number of qubits N becomes
large. A general expression giving the decoherence time scale in terms of
Markovian relaxation elements and expectation values of products of system
fluctuation operators is obtained, which could also be applied to study
decoherence in other macroscopic systems such as Bose condensates and
superconductors. A standard circuit model quantum computer involving
three-state lambda system ionic qubits is considered, with qubits localised
around well-separated positions via trapping potentials. The centre of mass
vibrations of the qubits act as a reservoir. Coherent one and two qubit gating
processes are controlled by time dependent localised classical electromagnetic
fields that address specific qubits, the two qubit gating processes being
facilitated by a cavity mode ancilla, which permits state interchange between
qubits. With a suitable choice of parameters, it is found that the decoherence
time can be made essentially independent of N.Comment: Minor revisions. To be published in J Mod Opt. One figur
The Las Campanas Distant Cluster Survey -- The Correlation Function
We present the first non-local (z>0.2) measurement of the cluster-cluster
spatial correlation length, using data from the Las Campanas Distant Cluster
Survey (LCDCS). We measure the angular correlation function for
velocity-dispersion limited subsamples of the catalog at estimated redshifts of
0.35<z_{est}<0.575, and derive spatial correlation lengths for these clusters
via the cosmological Limber equation. The correlation lengths that we measure
for clusters in the LCDCS are consistent both with local results for the APM
cluster catalog and with theoretical expectations based upon the Virgo
Consortium Hubble Volume simulations and the analytic predictions. Despite
samples containing over 100 clusters, our ability to discriminate between
cosmological models is limited because of statistical uncertainty.Comment: 7 pages, 4 figures, accepted to ApJ (v571, May 20, 2002
Asymmetric double-well potential for single atom interferometry
We consider the evolution of a single-atom wavefunction in a time-dependent
double-well interferometer in the presence of a spatially asymmetric potential.
We examine a case where a single trapping potential is split into an asymmetric
double well and then recombined again. The interferometer involves a
measurement of the first excited state population as a sensitive measure of the
asymmetric potential. Based on a two-mode approximation a Bloch vector model
provides a simple and satisfactory description of the dynamical evolution. We
discuss the roles of adiabaticity and asymmetry in the double-well
interferometer. The Bloch model allows us to account for the effects of
asymmetry on the excited state population throughout the interferometric
process and to choose the appropriate splitting, holding and recombination
periods in order to maximize the output signal. We also compare the outcomes of
the Bloch vector model with the results of numerical simulations of the
multi-state time-dependent Schroedinger equation.Comment: 9 pages, 6 figure
Teleportation with a uniformly accelerated partner
In this work, we give a description of the process of teleportation between
Alice in an inertial frame, and Rob who is in uniform acceleration with respect
to Alice. The fidelity of the teleportation is reduced due to Unruh radiation
in Rob's frame. In so far as teleportation is a measure of entanglement, our
results suggest that quantum entanglement is degraded in non inertial frames.Comment: 7 pages with 4 figures (in revtex4
Evolution of the Cluster Correlation Function
We study the evolution of the cluster correlation function and its
richness-dependence from z = 0 to z = 3 using large-scale cosmological
simulations. A standard flat LCDM model with \Omega_m = 0.3 and, for
comparison, a tilted \Omega_m = 1 model, TSCDM, are used. The evolutionary
predictions are presented in a format suitable for direct comparisons with
observations. We find that the cluster correlation strength increases with
redshift: high redshift clusters are clustered more strongly (in comoving
scale) than low redshift clusters of the same mass. The increased correlations
with redshift, in spite of the decreasing mass correlation strength, is caused
by the strong increase in cluster bias with redshift: clusters represent higher
density peaks of the mass distribution as the redshift increases. The
richness-dependent cluster correlation function, presented as the
correlation-scale versus cluster mean separation relation, R_0 - d, is found to
be, remarkably, independent of redshift to z <~ 2 for LCDM and z <~ 1 for TCDM
(for a fixed correlation function slope and cluster mass within a fixed
comoving radius). The non-evolving R_0 - d relation implies that both the
comoving clustering scale and the cluster mean separation increase with
redshift for the same mass clusters so that the R_0 - d relation remains
essentially unchanged. The evolution of the R_0 - d relation from z ~ 0 to z ~
3 provides an important new tool in cosmology; it can be used to break
degeneracies that exist at z ~ 0 and provide precise determination of
cosmological parameters.Comment: AASTeX, 15 pages, including 5 figures, accepted version for
publication in ApJ, vol.603, March 200
- …