69 research outputs found
Using an Atomic Molecular Optics Laboratory for Undergraduate Research and Mentoring of Physics Students in Georgia
Using an Atomic Molecular Optics Laboratory for Undergraduate Research and Mentoring of Physics Students in Georgia
An Atomic and Molecular Optical (AMO) Physics research lab is an excellent tool to train and mentor undergraduate students in advanced laboratory techniques. Students gain valuable basic experience in experimental designs, data acquisition techniques, working with high precision optical equipment, building electronics, and working in the machine shop. The current project is building and testing an enclosure for the diode laser to reduce sound and vibrational interference. In addition, we are developing and evaluating a new, more compact laser cavity which is 3d printed. Previously completed projects involved building a temperature controller, current supply circuit, machining the laser mount, milling the vacuum chamber mounts to support the chamber, and machining the Helmholtz coils for the chamber, which are being used to trap the atoms in a Magneto Optical Trap (MOT). This included designing, building, and baking out the vacuum chamber, constructing a trap for the Rb in the chamber, and building the lasers for a saturation-absorption system that is used to probe the 52S1/2β 52P3/2 hyperfine energy transitions of the Rb-85 atom. These energy transitions have been used to frequency-lock a diode laser to trap Rb-85 atoms and then cool them to ultra-low temperatures. The atom cooling will permit observation and measurement of the fundamental properties of atoms. This lab has mentored and supported over twelve undergraduate students in the last four years, of which one became a High School Teacher, three joined Ph.D. programs, one continued in a masterβs level engineering program, and one went to graduate school to study bioengineering
National health and medical research council statement on electronic cigarettes: 2022 update
Introduction: Electronic cigarette (e-cigarette) use in Australia has rapidly increased since the 2017 National Health and Medical Research Council (NHMRC) Chief Executive Officer (CEO) statement on e-cigarettes. The type of products available and the demographic characteristics of people using these products have changed. New evidence has been published and there is growing concern among public health professionals about the increased use, particularly among young people who do not currently smoke combustible cigarettes. The combination of these issues led NHMRC to review the current evidence and provide an updated statement on e-cigarettes. In this article, we describe the comprehensive process used to review the evidence and develop the 2022 NHMRC CEO statement on electronic cigarettes. Main recommendations: E-cigarettes can be harmful; all e-cigarette users are exposed to chemicals and toxins that have the potential to cause adverse health effects. There are no health benefits of using e-cigarettes if you do not currently smoke tobacco cigarettes. Adolescents are more likely to try e-cigarettes if they are exposed to e-cigarettes on social media. Short term e-cigarette use may help some smokers to quit who have been previously unsuccessful with other smoking cessation aids. There are other proven safe and effective options available to help smokers to quit. Changes in management as a result of this statement: The evidence base for the harms of e-cigarette use has strengthened since the previous NHMRC statement. Significant gaps in the evidence base remain, especially about the longer term health harms of using e-cigarettes and the toxicity of many chemicals in e-cigarettes inhaled as an aerosol
Recommended from our members
The microtubule-associated protein DCAMKL1 regulates osteoblast function via repression of Runx2
Osteoblasts are responsible for the formation and mineralization of the skeleton. To identify novel regulators of osteoblast differentiation, we conducted an unbiased forward genetic screen using a lentiviral-based shRNA library. This functional genomics analysis led to the identification of the microtubule-associated protein DCAMKL1 (Doublecortin-like and CAM kinaseβlike 1) as a novel regulator of osteogenesis. Mice with a targeted disruption of Dcamkl1 displayed elevated bone mass secondary to increased bone formation by osteoblasts. Molecular experiments demonstrated that DCAMKL1 represses osteoblast activation by antagonizing Runx2, the master transcription factor in osteoblasts. Key elements of the cleidocranial dysplasia phenotype observed in Runx2+/β mice are reversed by the introduction of a Dcamkl1-null allele. Our results establish a genetic linkage between these two proteins in vivo and demonstrate that DCAMKL1 is a physiologically relevant regulator of anabolic bone formation
Recommended from our members
Hydrogen sulfide regulates hippocampal neuron excitability via S-sulfhydration of Kv2.1
Hydrogen sulfide (H2S) is gaining interest as a mammalian signalling molecule with wide ranging effects. S-sulfhydration is one mechanism that is emerging as a key post translational modification through which H2S acts. Ion channels and neuronal receptors are key target proteins for S-sulfhydration and this can influence a range of neuronal functions. Voltage-gated K+ channels, including Kv2.1, are fundamental components of neuronal excitability. Here, we show that both recombinant and native rat Kv2.1 channels are inhibited by the H2S donors, NaHS and GYY4137. Biochemical investigations revealed that NaHS treatment leads to S-sulfhydration of the full length wild type Kv2.1 protein which was absent (as was functional regulation by H2S) in the C73A mutant form of the channel. Functional experiments utilising primary rat hippocampal neurons indicated that NaHS augments action potential firing and thereby increases neuronal excitability. These studies highlight an important role for H2S in shaping cellular excitability through S-sulfhydration of Kv2.1 at C73 within the central nervous system
Dual Mechanism of Interleukin-3 Receptor Blockade by an Anti-Cancer Antibody
SummaryInterleukin-3 (IL-3) is an activated TΒ cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor Ξ± chain (IL3RΞ±) in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD), a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, and IL-13 receptors, adopting unique βopenβ and classical βclosedβ conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling. Significantly, whereas βopen-likeβ IL3RΞ± mutants can simultaneously bind IL-3 and CSL362, CSL362 still prevents the assembly of a higher-order IL-3 receptor-signaling complex. The discovery of open forms of cytokine receptors provides the framework for development of potent antibodies that can achieve a βdouble hitβ cytokine receptor blockade
An Osteoblast-Derived Proteinase Controls Tumor Cell Survival via TGF-beta Activation in the Bone Microenvironment
Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment.To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (ΞΌCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFΞ², a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays).Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFΞ² would be beneficial for the treatment of bone metastases
Chemotaxis of Cell Populations through Confined Spaces at Single-Cell Resolution
Cell migration is crucial for both physiological and pathological processes. Current in vitro cell motility assays suffer from various drawbacks, including insufficient temporal and/or optical resolution, or the failure to include a controlled chemotactic stimulus. Here, we address these limitations with a migration chamber that utilizes a self-sustaining chemotactic gradient to induce locomotion through confined environments that emulate physiological settings. Dynamic real-time analysis of both population-scale and single-cell movement are achieved at high resolution. Interior surfaces can be functionalized through adsorption of extracellular matrix components, and pharmacological agents can be administered to cells directly, or indirectly through the chemotactic reservoir. Direct comparison of multiple cell types can be achieved in a single enclosed system to compare inherent migratory potentials. Our novel microfluidic design is therefore a powerful tool for the study of cellular chemotaxis, and is suitable for a wide range of biological and biomedical applications
Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations
Background: The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. Methods: We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. Results: We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. Conclusion: We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma
Rare variant analyses validate known ALS genes in a multi-ethnic population and identifies ANTXR2 as a candidate in PLS
BackgroundAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting over 300,000 people worldwide. It is characterized by the progressive decline of the nervous system that leads to the weakening of muscles which impacts physical function. Approximately, 15% of individuals diagnosed with ALS have a known genetic variant that contributes to their disease. As therapies that slow or prevent symptoms continue to develop, such as antisense oligonucleotides, it is important to discover novel genes that could be targets for treatment. Additionally, as cohorts continue to grow, performing analyses in ALS subtypes, such as primary lateral sclerosis (PLS), becomes possible due to an increase in power. These analyses could highlight novel pathways in disease manifestation.MethodsBuilding on our previous discoveries using rare variant association analyses, we conducted rare variant burden testing on a substantially larger multi-ethnic cohort of 6,970 ALS patients, 166 PLS patients, and 22,524 controls. We used intolerant domain percentiles based on sub-region Residual Variation Intolerance Score (subRVIS) that have been described previously in conjunction with gene based collapsing approaches to conduct burden testing to identify genes that associate with ALS and PLS.ResultsA gene based collapsing model showed significant associations with SOD1, TARDBP, and TBK1 (ORβ=β19.18, pβ=β3.67βΓβ10β39; ORβ=β4.73, pβ=β2βΓβ10β10; ORβ=β2.3, pβ=β7.49βΓβ10β9, respectively). These genes have been previously associated with ALS. Additionally, a significant novel control enriched gene, ALKBH3 (pβ=β4.88βΓβ10β7), was protective for ALS in this model. An intolerant domain-based collapsing model showed a significant improvement in identifying regions in TARDBP that associated with ALS (ORβ=β10.08, pβ=β3.62βΓβ10β16). Our PLS protein truncating variant collapsing analysis demonstrated significant case enrichment in ANTXR2 (pβ=β8.38βΓβ10β6).ConclusionsIn a large multi-ethnic cohort of 6,970 ALS patients, collapsing analyses validated known ALS genes and identified a novel potentially protective gene, ALKBH3. A first-ever analysis in 166 patients with PLS found a candidate association with loss-of-function mutations in ANTXR2
The NANOGrav 15 yr Data Set: Search for Transverse Polarization Modes in the Gravitational-wave Background
Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These correlations describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more general metric theories of gravity can have additional polarization modes, which produce different interpulsar correlations. In this work, we search the NANOGrav 15 yr data set for evidence of a gravitational-wave background with quadrupolar HD and scalar-transverse (ST) correlations. We find that HD correlations are the best fit to the data and no significant evidence in favor of ST correlations. While Bayes factors show strong evidence for a correlated signal, the data does not strongly prefer either correlation signature, with Bayes factors βΌ2 when comparing HD to ST correlations, and βΌ1 for HD plus ST correlations to HD correlations alone. However, when modeled alongside HD correlations, the amplitude and spectral index posteriors for ST correlations are uninformative, with the HD process accounting for the vast majority of the total signal. Using the optimal statistic, a frequentist technique that focuses on the pulsar-pair cross-correlations, we find median signal-to-noise ratios of 5.0 for HD and 4.6 for ST correlations when fit for separately, and median signal-to-noise ratios of 3.5 for HD and 3.0 for ST correlations when fit for simultaneously. While the signal-to-noise ratios for each of the correlations are comparable, the estimated amplitude and spectral index for HD are a significantly better fit to the total signal, in agreement with our Bayesian analysis
- β¦