20 research outputs found
Protein 4.1R expression in normal and dystrophic skeletal muscle
4.1R pre-mRNA alternative splicing results in multiple mRNA and protein isoforms that are expressed in virtually all tissues. More specifically, isoforms containing the alternative exon 17a, are exclusively expressed in muscle tissues. In this report, we show that these isoforms are preferentially present in the myoplasm of fast myofibres. 4.1R epitopes are also found at the sarcolemma of both slow and fast myofibres in normal muscle. Interestingly, they are absent from dystrophin-deficient sarcolemma of DMD muscle, and colocalize with partially expressed dystrophin in BMD muscle. We also show that alternative splicing of exons 16 and 17a is regulated during muscle differentiation in an asynchronous fashion, with an early inclusion of exon 16 in forming myotubes, and a late inclusion of exon 17a. Consistently, Western blot analysis led to characterize mainly an approximately 96/98-kDa doublet bearing exons 16-17a-encoding peptide, exclusively occurring in the differentiated muscle
BRCA1 expression during prenatal development of the human mammary gland
International audienceGerm-line alterations of BRCA1 are associated with elevated risk of breast cancer. Evidence for the involvement of Brca1 in cellular differentiation and morphogenesis has been obtained in mouse models during embryogenesis. Although the presence of well-conserved functional domains might suggest a similar function for both human and mouse genes, very few data on BRCA1 expression in human fetal tissues are available. We have, therefore, investigated the expression of BRCA1 in the mammary gland from human female fetuses aged between 15 and 33 weeks. Quantification of BRCA1 transcripts, using a competitive reverse transcriptase PCR method, indicates a progressive decrease in BRCA1 expression with increasing fetal age between the 15th and 30th week of gestation. Subsequently, the amount of BRCA1 transcripts becomes similar to that found in adult mammary gland. Analysis of BRCA1 protein revealed, in fetal samples, a 220 kDa band corresponding to the 220 kDa BRCA1 protein described in human cell lines. These later experiments confirm that the relative level of the 220 kDa BRCA1 protein is highest in the early stages of mammary gland development. The temporal patterns of BRCA1 expression in human fetuses suggest a role for BRCA1 in the morphogenesis and differentiation of the human mammary gland
Emerging Role of Eukaryote Ribosomes in Translational Control
Translation is one of the final steps that regulate gene expression. The ribosome is the effector of translation through to its role in mRNA decoding and protein synthesis. Many mechanisms have been extensively described accounting for translational regulation. However it emerged only recently that ribosomes themselves could contribute to this regulation. Indeed, though it is well-known that the translational efficiency of the cell is linked to ribosome abundance, studies recently demonstrated that the composition of the ribosome could alter translation of specific mRNAs. Evidences suggest that according to the status, environment, development, or pathological conditions, cells produce different populations of ribosomes which differ in their ribosomal protein and/or RNA composition. Those observations gave rise to the concept of “specialized ribosomes”, which proposes that a unique ribosome composition determines the translational activity of this ribosome. The current review will present how technological advances have participated in the emergence of this concept, and to which extent the literature sustains this concept today
Ribosome biogenesis: an emerging druggable pathway for cancer therapeutics
International audienceRibosomes are nanomachines essential for protein production in all living cells. Ribosome synthesis increases in cancer cells to cope with a rise in protein synthesis and sustain unrestricted growth. This increase in ribosome biogenesis is reflected by severe morphological alterations of the nucleolus, the cell compartment where the initial steps of ribosome biogenesis take place. Ribosome biogenesis has recently emerged as an effective target in cancer therapy, and several compounds that inhibit ribosome production or function, killing preferentially cancer cells, have entered clinical trials. Recent research indicates that cells express heterogeneous populations of ribosomes and that the composition of ribosomes may play a key role in tumorigenesis, exposing novel therapeutic opportunities. Here, we review recent data demonstrating that ribosome biogenesis is a promising druggable pathway in cancer therapy, and discuss future research perspectives
Cell cycle-dependent conjugation of endogenous BRCA1 protein with SUMO-2/3
International audienceBackground: BRCA1, the main breast and ovarian cancer susceptibility gene, has a key role in maintenance of genome stability, cell cycle and transcription regulation. Interestingly, some of the numerous proteins which interact with BRCA1 protein undergo conjugation with small ubiquitin-like modifiers (SUMO). This post-translational modification is related to transcription, DNA repair, nuclear transport, signal transduction, and to cell cycle stress response. Methods and results: Protein sequence analysis suggests that sumoylation target sites belong to the RING finger and BRCT domains (BRCA1 C-terminus), two crucial regions for BRCA1 function. Moreover putative SUMO interacting motifs are present in the sequence of many proteins of BRCA1 network. Using immunoprecipitations and western blotting, we show the conjugation of endogenous nuclear BRCA1 protein with SUMO-2/3. BRCA1 conjugation with SUMO-2/3 is linked to the cell cycle in a cell line dependent manner since no cell cycle dependence of sumoylation is observed in MCF7 breast cancer cells. In contrast, BRCA1 conjugation with SUMO-2/3 is linked to the oxidative stress independently to the cell line, in DU145, MCF7 and 293 T cells. Conclusion and general significance: Our data reveal a new BRCA1 regulation pathway implying sumoylation in response to cell cycle progression and oxidative stress, providing a possible mechanism for the involvement of BRCA1 gene in tumorigenesis. (C) 2010 Elsevier B.V. All rights reserved
Actualités en recherche en oncologie : l'essentiel du 4e Symposium International 2019 du Centre de Recherche en Cancérologie de Lyon
International audienc
A novel view on an old drug, 5-fluorouracil: an unexpected RNA modifier with intriguing impact on cancer cell fate
International audienceAbstract 5-Fluorouracil (5-FU) is a chemotherapeutic drug widely used to treat patients with solid tumours, such as colorectal and pancreatic cancers. Colorectal cancer (CRC) is the second leading cause of cancer-related death and half of patients experience tumour recurrence. Used for over 60 years, 5-FU was long thought to exert its cytotoxic effects by altering DNA metabolism. However, 5-FU mode of action is more complex than previously anticipated since 5-FU is an extrinsic source of RNA modifications through its ability to be incorporated into most classes of RNA. In particular, a recent report highlighted that, by its integration into the most abundant RNA, namely ribosomal RNA (rRNA), 5-FU creates fluorinated active ribosomes and induces translational reprogramming. Here, we review the historical knowledge of 5-FU mode of action and discuss progress in the field of 5-FU-induced RNA modifications. The case of rRNA, the essential component of ribosome and translational activity, and the plasticity of which was recently associated with cancer, is highlighted. We propose that translational reprogramming, induced by 5-FU integration in ribosomes, contributes to 5-FU-driven cell plasticity and ultimately to relapse
Low glucose microenvironment of normal kidney cells stabilizes a subset of messengers involved in angiogenesis
International audienceAs glucose is a mandatory nutrient for cell proliferation and renewal, it is suspected that glucose microenvironment is sensed by all cell types to regulate angiogenesis. Several glucose-sensing components have been partially described to respond to high glucose levels. However, little is known about the response to low glucose. Here, we used well-differentiated isolated normal rat renal tubules under normal oxygenation conditions to assess the angio-genic response to low glucose. In apparent paradox, but confirming observations made separately in other models, high glucose but also low glucose increased mRNA level of vascular endothelial growth factor A (VEGFA). A subset of mRNAs including hypoxia-inducible factor 1A (HIF1A), angiopoie-tin receptor (TIE-2), and VEGF receptor 2 (FLK1) were similarly glucose-sensitive and responded to low glucose by increased stability independently of HIF1A and HIF2A proteins. These results contribute to gain some insights as to how normal cells response to low glucose may play a role in the tumor microenvironment
BRCA1-Dependent Translational Regulation in Breast Cancer Cells
<div><p>BRCA1 (Breast Cancer 1) has been implicated in a number of cellular processes, including transcription regulation, DNA damage repair and protein ubiquitination. We previously demonstrated that BRCA1 interacts with PABP1 (Poly(A)-Binding Protein 1) and that BRCA1 modulates protein synthesis through this interaction. To identify the mRNAs that are translationally regulated by BRCA1, we used a microarray analysis of polysome-bound mRNAs in BRCA1-depleted and non-depleted MCF7 cells. Our findings show that BRCA1 modifies the translational efficiency of approximately 7% of the mRNAs expressed in these cells. Further analysis revealed that several processes contributing to cell surveillance such as cell cycle arrest, cell death, cellular growth and proliferation, DNA repair and gene expression, are largely enriched for the mRNAs whose translation is impacted by BRCA1. The BRCA1-dependent translation of these species of mRNAs therefore uncovers a novel mechanism through which BRCA1 exerts its onco-suppressive role. In addition, the BRCA1-dependent translation of mRNAs participating in unexpected functions such as cellular movement, nucleic acid metabolism or protein trafficking is indicative of novel functions for BRCA1. Finally, this study contributes to the identification of several markers associated with BRCA1 deficiency and to the discovery of new potential anti-neoplastic therapeutic targets.</p></div