4 research outputs found

    Performance of a spaghetti calorimeter prototype with tungsten absorber and garnet crystal fibres

    Full text link
    A spaghetti calorimeter (SPACAL) prototype with scintillating crystal fibres was assembled and tested with electron beams of energy from 1 to 5 GeV. The prototype comprised radiation-hard Cerium-doped Gd3_3Al2_2Ga3_3O12_{12} (GAGG:Ce) and Y3_3Al5_5O12_{12} (YAG:Ce) embedded in a pure tungsten absorber. The energy resolution was studied as a function of the incidence angle of the beam and found to be of the order of 10%/E⊕1%10\% / \sqrt{E} \oplus1\%, in line with the LHCb Shashlik technology. The time resolution was measured with metal channel dynodes photomultipliers placed in contact with the fibres or coupled via a light guide, additionally testing an optical tape to glue the components. Time resolution of a few tens of picosecond was achieved for all the energies reaching down to (18.5 ±\pm 0.2) ps at 5 GeV.Comment: 14 pages, 8 figures, published on NIM

    Strategic R&D Programme on Technologies for Future Experiments - Annual Report 2021

    No full text
    This report summarises the activities and main achievements of the CERN strategic R&D programme on technologies for future experiments during the year 2021

    Annual Report 2022

    No full text
    This report summarises the activities and main achievements of the CERN strategic R&D programme on technologies for future experiments during the year 202

    Extension of the R&D Programme on Technologies for Future Experiments

    No full text
    we have conceived an extension of the R&D programme covering the period 2024 to 2028, i.e. again a 5-year period, however with 2024 as overlap year. This step was encouraged by the success of the current programme but also by the Europe-wide efforts to launch new Detector R&D collaborations in the framework of the ECFA Detector R&D Roadmap. We propose to continue our R&D programme with the main activities in essentially the same areas. All activities are fully aligned with the ECFA Roadmap and in most cases will be carried out under the umbrella of one of the new DRD collaborations. The program is a mix of natural continuations of the current activities and a couple of very innovative new developments, such as a radiation hard embedded FPGA implemented in an ASIC based on System-on-Chip technology. A special and urgent topic is the fabrication of Al-reinforced super-conducting cables. Such cables are a core ingredient of any new superconducting magnet such as BabyIAXO, PANDA, EIC, ALICE-3 etc. Production volumes are small and demands come in irregular intervals. Industry (world-wide) is no longer able and willing to fabricate such cables. The most effective approach (technically and financially) may be to re-invent the process at CERN, together with interested partners, and offer this service to the community
    corecore