34 research outputs found

    Network-on-Chip Firewall: Countering Defective and Malicious System-on-Chip Hardware

    No full text
    Abstract. Mobile devices are in roles where the integrity and confiden-tiality of their apps and data are of paramount importance. They usually contain a System-on-Chip (SoC), which integrates microprocessors and peripheral Intellectual Property (IP) connected by a Network-on-Chip (NoC). Malicious IP or software could compromise critical data. Some types of attacks can be blocked by controlling data transfers on the NoC using Memory Management Units (MMUs) and other access control mechanisms. However, commodity processors do not provide strong assur-ances regarding the correctness of such mechanisms, and it is challenging to verify that all access control mechanisms in the system are correctly configured. We propose a NoC Firewall (NoCF) that provides a single locus of control and is amenable to formal analysis. We demonstrate an initial analysis of its ability to resist malformed NoC commands, which we believe is the first effort to detect vulnerabilities that arise from NoC protocol violations perpetrated by erroneous or malicious IP.

    Thermal Decomposition of Nitropyrazoles

    Get PDF
    AbstractFully nitrated five-membered heterocycles (pyrazoles), polynitropyrazoles in particular, have been actively studied as promising high-energy materials. Polynitropyrazoles have high density and high enthalpy of formation combined with reduced sensitivity to external stimuli. We have studied non-equilibrium processes of thermal decomposition of the first members of high-energy polynitropyrazoles row, i.e., 3,4–dinitropyrazole, 3,5–dinitropyrazole, and 3,4,5-trinitropyrazole, under atmospheric and increased pressures. The use of increased pressure allowed to reduce the influence of evaporation process of 3,5–dinitropyrazole and to determine the temperature and heat effect of its decomposition, which was found to exceed this value for HMX. For the first time evolved gas products were identified for each stage of decomposition. As a result the probable thermal decomposition pathway for the investigated materials was suggested
    corecore