2 research outputs found
Projection Postulate and Atomic Quantum Zeno Effect
The projection postulate has been used to predict a slow-down of the time
evolution of the state of a system under rapidly repeated measurements, and
ultimately a freezing of the state. To test this so-called quantum Zeno effect
an experiment was performed by Itano et al. (Phys. Rev. A 41, 2295 (1990)) in
which an atomic-level measurement was realized by means of a short laser pulse.
The relevance of the results has given rise to controversies in the literature.
In particular the projection postulate and its applicability in this experiment
have been cast into doubt. In this paper we show analytically that for a wide
range of parameters such a short laser pulse acts as an effective level
measurement to which the usual projection postulate applies with high accuracy.
The corrections to the ideal reductions and their accumulation over n pulses
are calculated. Our conclusion is that the projection postulate is an excellent
pragmatic tool for a quick and simple understanding of the slow-down of time
evolution in experiments of this type. However, corrections have to be
included, and an actual freezing does not seem possible because of the finite
duration of measurements.Comment: 25 pages, LaTeX, no figures; to appear in Phys. Rev.