24 research outputs found

    Parameters Identification of the Fractional-Order Permanent Magnet Synchronous Motor Models Using Chaotic Ensemble Particle Swarm Optimizer

    No full text
    In this paper, novel variants for the Ensemble Particle Swarm Optimizer (EPSO) are proposed where ten chaos maps are merged to enhance the EPSO’s performance by adaptively tuning its main parameters. The proposed Chaotic Ensemble Particle Swarm Optimizer variants (C.EPSO) are examined with complex nonlinear systems concerning equal order and variable-order fractional models of Permanent Magnet Synchronous Motor (PMSM). The proposed variants’ results are compared to that of its original version to recommend the most suitable variant for this non-linear optimization problem. A comparison between the introduced variants and the previously published algorithms proves the developed technique’s efficiency for further validation. The results emerge that the Chaotic Ensemble Particle Swarm variants with the Gauss/mouse map is the most proper variant for estimating the parameters of equal order and variable-order fractional PMSM models, as it achieves better accuracy, higher consistency, and faster convergence speed, it may lead to controlling the motor’s unwanted chaotic performance and protect it from ravage

    Static and dynamic photovoltaic models' parameters identification using Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer variants

    No full text
    Photovoltaic modeling has attracted researchers’ attention worldwide because of its importance in the photovoltaic system design. Therefore, several photovoltaic models have been introduced as static and dynamic photovoltaic models. Moreover, a novel fractional order dynamic photovoltaic model has been recently developed to enhance the accuracy and flexibility of the conventional integral order one. The unknown parameters of these models should be extracted accurately to achieve a proper photovoltaic system design and operation. In this work, novel Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer variants are introduced, where the Heterogeneous Comprehensive Learning Particle Swarm Optimizer is combined with ten different chaos maps to adapt its parameters. Six Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer variants are proposed in addition to the standard Heterogeneous Comprehensive Learning Particle Swarm Optimizer version to identify the parameters of both the static and the dynamic models based on different experimental datasets. To demonstrate the superiority of the developed variants, their results are compared to the most recent state-of-the-art algorithms with the aid of statistical analysis methods. The main outcome is that, in both of the static and the dynamic photovoltaic models, the Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer variants show their efficiency, accuracy and robustness not only over Heterogeneous Comprehensive Learning Particle Swarm Optimizer but also over recently published algorithms. They provide better fitting relative to the experimental datasets with the least deviation error and the fastest convergence speed as well. In the case of static models, the fourth variant of Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer with an iterative map for the single diode model, the third variant of Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer with singer map for the double diode model of solar cell. On the other hand, for the dynamic models, the second Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer variant with sinusoidal map for the integral order dynamic photovoltaic model and the sixth variant of Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer with Gauss/mouse map for the fractional order dynamic photovoltaic model offer the best performance

    A novel optimized dynamic fractional-order MPPT controller using hunter pray optimizer for alleviating the tracking oscillation with changing environmental conditions

    No full text
    Introducing new control strategies in the photovoltaic (PV) system to continuously harvest the maximum power with the changes in environmental conditions is a crucial issue. Therefore, this paper proposes an efficient maximum power point tracker (MPPT) using the perspective of fractional calculus to provide an accurate dynamic response to the rapid changes in environmental conditions. The proposed control scheme is an integration between the fractional proportional–integral (FPI) controller and dynamic variable fractional-order perturb and observe (P&O) MPPT. To optimally identify the proposed MPPT controller parameters, a novel hunter-pray optimizer (HPO) is implemented as it is featured by its efficient balance between exploration and exploitation capacity. The proposed MPPT controller is examined with a series of experiments under dynamically changed environmental conditions. Furthermore, a detailed comparison is conducted versus a set of state-of-the-art including; incremental conductance (INC), basic P&O, MPPT-based particle swarm optimizer(PSO), MPPT-based Grey Wolf Optimizer(GWO), and MPPT-based cuckoo search algorithm (CSA). The results prove that the proposed MPPT is capable to track the global maximum generated power with a notable steady-state response and is almost free of oscillations which ensures an optimal adaptive dynamic performance in response to the rapid variation in the environmental conditions. Moreover, the proposed approach affirms its superiority compared to the set of state-of-the-art techniques in providing the highest maximum power levels in the shortest conversion time. The outcomes provide proof of the remarkable impacts of integrating fractional calculus in enhancing the dynamic response of the proposed MPPT because of the extra degree of freedom that enhance the flexibility of the MPPT

    A New Hybrid White Shark and Whale Optimization Approach for Estimating the Li-Ion Battery Model Parameters

    No full text
    Constructing a reliable equivalent circuit of Li-Ion batteries using real operating conditions by estimating optimal parameters is mandatory for many engineering applications, as it controls the energy management of the battery in a hybrid system. However, model parameters can vary according to the electrochemical nature of the battery, so improving the accuracy of the battery model parameters is essential to obtain reliable and accurate equivalent circuits. Therefore, this paper proposes a new efficient hybrid optimization approach for determining the proper parameters of Li-ion battery Shepherd model equivalent circuits. The proposed algorithm comprises a white shark optimizer (WSO) and the whale optimization approach (WOA) for modifying the stochastic behavior of the WSO while searching for food sources. Minimizing the root mean square error between the estimated and measured battery voltages is the objective function considered in this work. The hybrid variant of the WSO (HWSO) was examined with two different types of batteries. Moreover, the proposed HWSO was validated versus a set of recent meta-heuristic approaches including the sea horse optimizer (SHO), artificial gorilla troops optimizer (GTO), coyote optimization algorithm (COA), and the basic version of the WSO. Furthermore, statistical analyses, mean convergence, and fitting curves were conducted for the comparisons. The proposed HWSO succeeded in achieving the least fitness values of 2.6172 × 10−4 and 5.6118 × 10−5 with standard deviations of 9.3861 × 10−5 and 3.2854 × 10−4 for battery 1 and battery 2, respectively. On the other hand, the worst fitness values were 6.5230 × 10−2 and 6.6197 × 10−5 via SHO and WSO for both considered batteries. The proposed HWSO results prove the efficiency of the proposed approach in providing highly accurate battery model parameters with high consistency and a unique convergence curve compared to the other methods

    A new implementation of the MPPT based raspberry Pi embedded board for partially shaded photovoltaic system

    No full text
    The operation of photovoltaic (PV) module under partial shadow conditions considers a big challenge for most researchers due to power loss and hot spots that reduce the amount of extracted power. In such an operation, the panel voltage–power curve has a unique global maximum power (GMP) to be tracked. Therefore, this paper proposes a new maximum power point tracker (MPPT) implemented by Raspberry Pi 4-based embedded board programmed via two metaheuristic approaches of cuckoo search (CS) and particle swarm optimizer (PSO). The approaches are developed using python software programming language to adapt the duty cycle fed to the MOSFET of DC/DC boost converter connected to the panel terminals. The panel is simulated in Simulink/Matlab library to identify the GMP in each studied case. An experimental setup is conducted in the lab room of the college of Engineering, Jouf University, Saudi Arabia to assess the proposed tracker. Moreover, eight shade patterns are considered via covering 10% to 80% with step 10% of panel with shadow. Furthermore, statistical tests of the Wilcoxson sign rank test and ANOVA are conducted to assess the validity of the proposed tracker. The obtained results are compared to perturb and observe (P&O) and gray​ wolf optimizer (GWO). The PSO-based tracker achieved the best efficiency of 96.92%, the CS achieved 93.62%, and GWO get an efficiency of 93.15%. Additionally, on the side of Wilcoxson sign rank and ANOVA tests, the PSO outperformed CS and GWO. The results confirmed the superiority of the proposed Raspberry Pi system programmed via PSO over that of CS and GWO in enhancing the power generated from the panel operated at different partial shades

    A Robust Fractional-Order PID Controller Based Load Frequency Control Using Modified Hunger Games Search Optimizer

    No full text
    In this article, a recent modified meta-heuristic optimizer named the modified hunger games search optimizer (MHGS) is developed to determine the optimal parameters of a fractional-order proportional integral derivative (FOPID) based load frequency controller (LFC). As an interconnected system’s operation requires maintaining the tie-line power and frequency at their described values without permitting deviations in them, an enhanced optimizer is developed to identify the controllers’ parameters efficiently and rapidly. Therefore, the non-uniform mutation operator is proposed to strengthen the diversity of the solutions and discover the search landscape of the basic hunger games search optimizer (HGS), aiming to provide a reliable approach. The considered fitness function is the integral time absolute error (ITAE) comprising the deviations in tie-line power and frequencies. The analysis is implemented in two networks: the 1st network comprises a photovoltaic (PV) plant connected to the thermal plant, and the 2nd network has four connected plants, which are PV, wind turbine (WT), and 2 thermal units with generation rate constraints and governor dead-band. Two different load disturbances are imposed for two studied systems: static and dynamic. The results of the proposed approach of MHGS are compared with the marine predators algorithm (MPA), artificial ecosystem based optimization (AEO), equilibrium optimizer (EO), and Runge–Kutta based optimizer (RUN), as well as movable damped wave algorithm (DMV) results. Moreover, the performance specifications of the time responses of frequencies and tie-line powers’ violations comprising rise time, settling time, minimum/maximum setting values, overshoot, undershoot, and the peak level besides its duration are calculated. The proposed MHGS shows its reliability in providing the most efficient values for the FOPID controllers’ parameters that achieve the lowest fitness of 0.89726 in a rapid decaying. Moreover, the MHGS based system becomes stable the most quickly as it has the shortest settling time and is well constructed as it has the smallest peak, overshoots at early times, and then the system becomes steady. The results confirmed the competence of the proposed MHGS in designing efficient FOPID-LFC controllers that guarantee reliable operation in case of load disturbances

    A Robust Fractional-Order PID Controller Based Load Frequency Control Using Modified Hunger Games Search Optimizer

    No full text
    In this article, a recent modified meta-heuristic optimizer named the modified hunger games search optimizer (MHGS) is developed to determine the optimal parameters of a fractional-order proportional integral derivative (FOPID) based load frequency controller (LFC). As an interconnected system’s operation requires maintaining the tie-line power and frequency at their described values without permitting deviations in them, an enhanced optimizer is developed to identify the controllers’ parameters efficiently and rapidly. Therefore, the non-uniform mutation operator is proposed to strengthen the diversity of the solutions and discover the search landscape of the basic hunger games search optimizer (HGS), aiming to provide a reliable approach. The considered fitness function is the integral time absolute error (ITAE) comprising the deviations in tie-line power and frequencies. The analysis is implemented in two networks: the 1st network comprises a photovoltaic (PV) plant connected to the thermal plant, and the 2nd network has four connected plants, which are PV, wind turbine (WT), and 2 thermal units with generation rate constraints and governor dead-band. Two different load disturbances are imposed for two studied systems: static and dynamic. The results of the proposed approach of MHGS are compared with the marine predators algorithm (MPA), artificial ecosystem based optimization (AEO), equilibrium optimizer (EO), and Runge–Kutta based optimizer (RUN), as well as movable damped wave algorithm (DMV) results. Moreover, the performance specifications of the time responses of frequencies and tie-line powers’ violations comprising rise time, settling time, minimum/maximum setting values, overshoot, undershoot, and the peak level besides its duration are calculated. The proposed MHGS shows its reliability in providing the most efficient values for the FOPID controllers’ parameters that achieve the lowest fitness of 0.89726 in a rapid decaying. Moreover, the MHGS based system becomes stable the most quickly as it has the shortest settling time and is well constructed as it has the smallest peak, overshoots at early times, and then the system becomes steady. The results confirmed the competence of the proposed MHGS in designing efficient FOPID-LFC controllers that guarantee reliable operation in case of load disturbances

    Quantum Chaotic Honey Badger Algorithm for Feature Selection

    No full text
    Determining the most relevant features is a critical pre-processing step in various fields to enhance prediction. To address this issue, a set of feature selection (FS) techniques have been proposed; however, they still have certain limitations. For example, they may focus on nearby points, which lowers classification accuracy because the chosen features may include noisy features. To take advantage of the benefits of the quantum-based optimization technique and the 2D chaotic Hénon map, we provide a modified version of the honey badger algorithm (HBA) called QCHBA. The ability of such strategies to strike a balance between exploitation and exploration while identifying the workable subset of pertinent features is the basis for employing them to enhance HBA. The effectiveness of QCHBA was evaluated in a series of experiments conducted using eighteen datasets involving comparison with recognized FS techniques. The results indicate high efficiency of the QCHBA among the datasets using various performance criteria

    Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence

    No full text
    In this research work, the best operating conditions of microbial electrolysis cells (MECs) were identified using artificial intelligence and modern optimization. MECs are innovative materials that can be used for simultaneous wastewater treatment and bio-hydrogen production. The main objective is the maximization of bio-hydrogen production during the wastewater treatment process by MECs. The suggested strategy contains two main stages: modelling and optimal parameter identification. Firstly, using adaptive neuro-Fuzzy inference system (ANFIS) modelling, an accurate model of the MES was created. Secondly, the optimal parameters of the operating conditions were determined using the jellyfish optimizer (JO). Three operating variables were studied: incubation temperature (°C), initial potential of hydrogen (pH), and influent chemical oxygen demand (COD) concentration (%). Using some measured data points, the ANFIS model was built for simulating the output of MFC considering the operating parameters. Afterward, a jellyfish optimizer was applied to determine the optimal temperature, initial pH, and influent COD concentration values. To demonstrate the accuracy of the proposed strategy, a comparison with previous approaches was conducted. For the modelling stage, compared with the response surface methodology (RSM), the coefficient of determination increased from 0.8953 using RSM to 0.963 using ANFIS, by around 7.56%. In addition, the RMSE decreased from 0.1924 (using RSM) to 0.0302 using ANFIS, whereas for the optimal parameter identification stage, the optimal values were 30.2 °C, 6.53, and 59.98 (%), respectively, for the incubation temperature, the initial potential of hydrogen (pH), and the influent COD concentration. Under this condition, the maximum rate of the hydrogen production is 1.252 m3H2/m3d. Therefore, the proposed strategy successfully increased the hydrogen production from 1.1747 m3H2/m3d to 1.253 m3H2/m3d by around 6.7% compared to RSM

    Quantum Chaotic Honey Badger Algorithm for Feature Selection

    No full text
    Determining the most relevant features is a critical pre-processing step in various fields to enhance prediction. To address this issue, a set of feature selection (FS) techniques have been proposed; however, they still have certain limitations. For example, they may focus on nearby points, which lowers classification accuracy because the chosen features may include noisy features. To take advantage of the benefits of the quantum-based optimization technique and the 2D chaotic Hénon map, we provide a modified version of the honey badger algorithm (HBA) called QCHBA. The ability of such strategies to strike a balance between exploitation and exploration while identifying the workable subset of pertinent features is the basis for employing them to enhance HBA. The effectiveness of QCHBA was evaluated in a series of experiments conducted using eighteen datasets involving comparison with recognized FS techniques. The results indicate high efficiency of the QCHBA among the datasets using various performance criteria
    corecore