9 research outputs found
Plasma membrane calcium ATPase activity is regulated by actin oligomers through direct interaction
As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca2+ with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca2+-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca2+-ATPase activity was related to an increase in the apparent affinity for Ca2+ and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca2+ homeostasis.Fil: Dalghi, Marianela Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Fernández, Marisa Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Ferreira Gomes, Mariela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Mangialavori, Irene Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Malchiodi, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Strehler, Emanuel E.. Mayo Clinic College of Medicine; Estados UnidosFil: Rossi, Juan Pablo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin
Nutrient Transport in the Mammary Gland: Calcium, Trace Minerals and Water Soluble Vitamins.
Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases
Regulación de la Calcio ATPasa de membrana plasmática por el citoesqueleto de actina
Las asociaciones entre los componentes de la membrana plasmática y el citoesqueleto cortical son consideradas ya no sólo de naturaleza estructural y mecánica sino que hoy en día son reconocidas como interacciones dinámicas que modulan una plétora de respuestas celulares. Los filamentos de actina se reorganizan ante la aparición de diversos estímulos, entre los que se destaca el aumento de Ca2+ citosólico, que participa en la motilidad celular y la adherencia, la fagocitosis, la citoquinesis y la secreción. La dinámica de la actina participa en la regulación del transporte iónico a través de las membranas donde no sólo juega un papel clave en la entrega y la estabilización de los canales y transportadores de la membrana plasmática, sino también en la regulación de su actividad. Hemos descrito recientemente la interacción funcional entre la actina y la membrana plasmática Ca2+-ATPasa (PMCA), lo que representa un nuevo mecanismo regulador de la bomba al tiempo que presenta un nuevo camino por el que participa el citoesqueleto de actina cortical en la regulación de la homeostasis del Ca2+ citosólico. En este trabajo de revisión, resumimos el conocimiento actual de la interacción entre el citoesqueleto cortical y la PMCA y discutimos los mecanismos posibles que explican la modulación de la bomba de calcio.Associations between the cortical cytoskeleton and the components of the plasma membrane are no longer considered to be merely of structural and mechanical nature but are nowadays recognized as dynamic interactions that modulate a plethora of cellular responses. Reorganization of actin filaments upon diverse stimuli –among which is the rise in cytosolic Ca2+– is involved in cell motility and adhesion, phagocytosis, cytokinesis, and secretion. Actin dynamics also participates in the regulation of ion transport across the membranes where it not only plays a key role in the delivery and stabilization of channels and transporters in the plasma membrane but also in the regulation of their activity. The recently described functional interaction between actin and the Plasma Membrane Ca2+-ATPase (PMCA) represents a novel regulatory mechanism of the pump at the time that unveils a new pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca2+ homeostasis. In this review, we summarize the current knowledge on the interaction between the cortical actin cytoskeleton and the PMCA and discuss the possible mechanisms that may explain the pump’s modulation.Fil: Dalghi, Marianela Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Ferreira Gomes, Mariela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Rossi, Juan Pablo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin
Regulation of the Plasma Membrane Calcium ATPases by the actin cytoskeleton
Associations between the cortical cytoskeleton and the components of the plasma membrane are no longer considered to be merely of structural and mechanical nature but are nowadays recognized as dynamic interactions that modulate a plethora of cellular responses. Reorganization of actin filaments upon diverse stimuli - among which is the rise in cytosolic Ca2+ – is involved in cell motility and adhesion, phagocytosis, cytokinesis, and secretion. Actin dynamics also participates in the regulation of ion transport across the membranes where it not only plays a key role in the delivery and stabilization of channels and transporters in the plasma membrane but also in the regulation of their activity. The recently described functional interaction between actin and the Plasma Membrane Ca2+-ATPase (PMCA) represents a novel regulatory mechanism of the pump at the time that unveils a new pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca2+ homeostasis. In this review, we summarize the current knowledge on the interaction between the cortical actin cytoskeleton and the PMCA and discuss the possible mechanisms that may explain the pump's modulation.Fil: Dalghi, Marianela Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Ferreira Gomes, Mariela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Rossi, Juan Pablo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin
Development and Validation of a Fast and Homogeneous Cell-Based Fluorescence Screening Assay for Divalent Metal Transporter 1 (DMT1/SLC11A2) Using the FLIPR Tetra.
Divalent metal ion transporter 1 (DMT1) is a proton-coupled Fe(2+) transporter that is essential for iron uptake in enterocytes and for transferrin-associated endosomal iron transport in many other cell types. DMT1 dysfunction is associated with several diseases such as iron overload disorders and neurodegenerative diseases. The main objective of the present work is to develop and validate a fluorescence-based screening assay for DMT1 modulators. We found that Fe(2+) or Cd(2+) influx could be reliably monitored in calcium 5-loaded DMT1-expressing HEK293 cells using the FLIPR Tetra fluorescence microplate reader. DMT1-mediated metal transport shows saturation kinetics depending on the extracellular substrate concentration, with a K0.5 value of 1.4 µM and 3.5 µM for Fe(2+) and Cd(2+), respectively. In addition, Cd(2+) was used as a substrate for DMT1, and we find a Ki value of 2.1 µM for a compound (2-(3-carbamimidoylsulfanylmethyl-benzyl)-isothiourea) belonging to the benzylisothioureas family, which has been identified as a DMT1 inhibitor. The optimized screening method using this compound as a reference demonstrated a Z' factor of 0.51. In summary, we developed and validated a sensitive and reproducible cell-based fluorescence assay suitable for the identification of compounds that specifically modulate DMT1 transport activity
RAB27B requirement for stretch-induced exocytosis in bladder umbrella cells
Umbrella cells, which must maintain a tight barrier, modulate their apical surface area during bladder filling by exocytosis of an abundant, subapical pool of discoidal- and/or fusiform-shaped vesicles (DFVs). Despite the importance of this trafficking event for bladder function, the pathways the promote DFV exocytosis remain to be identified. We previously showed that DFV exocytosis depends in part on a RAB11A-RAB8A-MYO5B network, but RAB27B is also reported to be associated with DFVs, and knockout mice lacking RAB27B have fewer DFVs. However, the RAB27B requirements for DFV exocytosis, and the relationship between RAB27B and the other umbrella cell-expressed RABs remains unclear. Using a whole-bladder preparation, we observed that filling-induced exocytosis of human growth hormone-loaded DFVs was significantly inhibited when RAB27B expression was down regulated using shRNA. RAB27A was also expressed in rat urothelium; however, RAB27A-specific shRNAs did not inhibit exocytosis, and the combination of RAB27A and RAB27B shRNAs did not significantly affect DFV exocytosis more than treatment with RAB27B shRNA alone. RAB27B and RAB11A showed a small degree of overlap when quantified using SQUASSH segmentation software, and expression of dominant-active or dominant-negative mutants of RAB11A or RAB8A, or expression of a RAB11A-specific shRNA, had no significant effect on the size, number, or intensity of RAB27B-positive DFVs. Likewise, treatment with RAB27B-specific shRNA had no effect on RAB11A-positive DFV parameters. We conclude that RAB27B, but not RAB27A, regulates DFV exocytosis in bladder umbrella cells in a manner that may be parallel to the previously described RAB11A-RAB8A-MYO5B pathway.Fil: Gallo, Luciana Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Dalghi, Marianela Gisela. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Clayton, Dennis R. University of Pittsburgh; Estados UnidosFil: Ruiz, Wily G.. University of Pittsburgh; Estados UnidosFil: Khandelwal, Puneet. University of Pittsburgh; Estados UnidosFil: Apodaca, Gerard. University of Pittsburgh; Estados Unido
Cortical cytoskeleton dynamics regulates plasma membrane calcium ATPase isoform-2 (PMCA2) activity.
We have previously shown that purified actin can directly bind to human plasma membrane Ca(2+) ATPase 4b (hPMCA4b) and exert a dual modulation on its Ca(2+)-ATPase activity: F-actin inhibits PMCA while short actin oligomers may contribute to PMCA activation. These studies had to be performed with purified proteins given the nature of the biophysical and biochemical approaches used. To assess whether a functional interaction between the PMCAs and the cortical cytoskeleton is of physiological relevance, we characterized this phenomenon in the context of a living cell by monitoring in real-time the changes in the cytosolic calcium levels ([Ca(2+)]CYT). In this study, we tested the influence of drugs that change the actin and microtubule polymerization state on the activity and membrane expression of the PMCA transiently expressed in human embryonic kidney (HEK293) cells, which allowed us to observe and quantify these relationships in a live cell, for the first time. We found that disrupting the actin cytoskeleton with cytochalasin D significantly increased PMCA-mediated Ca(2+) extrusion (~50-100%) whereas pre-treatment with the F-actin stabilizing agent jasplakinolide caused its full inhibition. When the microtubule network was disrupted by pretreatment of the cells with colchicine, we observed a significant decrease in PMCA activity (~40-60% inhibition) in agreement with the previously reported role of acetylated tubulin on the calcium pump. In none of these cases was there a difference in the level of expression of the pump at the cell surface, thus suggesting that the specific activity of the pump was the regulated parameter. Our results indicate that PMCA activity is profoundly affected by the polymerization state of the cortical cytoskeleton in living cells
Differential Effects of G- and F-Actin on the Plasma Membrane Calcium Pump Activity
We have previously shown that plasma membrane calcium ATPase (PMCA) pump activity is affected by the membrane protein concentration (Vanagas et al., Biochim Biophys Acta 1768:1641-1644, 2007). The results of this study provided evidence for the involvement of the actin cytoskeleton. In this study, we explored the relationship between the polymerization state of actin and its effects on purified PMCA activity. Our results show that PMCA associates with the actin cytoskeleton and this interaction causes a modulation of the catalytic activity involving the phosphorylated intermediate of the pump. The state of actin polymerization determines whether it acts as an activator or an inhibitor of the pump: G-actin and/or short oligomers activate the pump, while F-actin inhibits it. The effects of actin on PMCA are the consequence of direct interaction as demonstrated by immunoblotting and cosedimentation experiments. Taken together, these findings suggest that interactions with actin play a dynamic role in the regulation of PMCA-mediated Ca2+ extrusion through the membrane. Our results provide further evidence of the activation-inhibition phenomenon as a property of many cytoskeleton-associated membrane proteins where the cytoskeleton is no longer restricted to a mechanical function but is dynamically involved in modulating the activity of integral proteins with which it interacts. © 2012 Springer Science+Business Media New York.Fil: Vanagas, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: de la Fuente, Maria Candelaria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Dalghi, Marianela Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Ferreira Gomes, Mariela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Rossi, Rolando Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Strehler, Emanuel E.. Mayo Clinic College of Medicine; Estados UnidosFil: Mangialavori, Irene Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Rossi, Juan Pablo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin
Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake.
The extracellular effects of the endocannabinoids anandamide and 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after crossing cellular membranes by facilitated diffusion. The lack of potent and selective inhibitors for endocannabinoid transport has prevented the molecular characterization of this process, thus hindering its biochemical investigation and pharmacological exploitation. Here, we report the design, chemical synthesis, and biological profiling of natural product-derived N-substituted 2,4-dodecadienamides as a selective endocannabinoid uptake inhibitor. The highly potent (IC50 = 10 nM) inhibitor N-(3,4-dimethoxyphenyl)ethyl amide (WOBE437) exerted pronounced cannabinoid receptor-dependent anxiolytic, antiinflammatory, and analgesic effects in mice by increasing endocannabinoid levels. A tailored WOBE437-derived diazirine-containing photoaffinity probe (RX-055) irreversibly blocked membrane transport of both endocannabinoids, providing mechanistic insights into this complex process. Moreover, RX-055 exerted site-specific anxiolytic effects on in situ photoactivation in the brain. This study describes suitable inhibitors to target endocannabinoid membrane trafficking and uncovers an alternative endocannabinoid pharmacology