3,107 research outputs found
Fault-Tolerant Dissipative Preparation of Atomic Quantum Registers with Fermions
We propose a fault tolerant loading scheme to produce an array of fermions in
an optical lattice of the high fidelity required for applications in quantum
information processing and the modelling of strongly correlated systems. A cold
reservoir of Fermions plays a dual role as a source of atoms to be loaded into
the lattice via a Raman process and as a heat bath for sympathetic cooling of
lattice atoms. Atoms are initially transferred into an excited motional state
in each lattice site, and then decay to the motional ground state, creating
particle-hole pairs in the reservoir. Atoms transferred into the ground
motional level are no longer coupled back to the reservoir, and doubly occupied
sites in the motional ground state are prevented by Pauli blocking. This scheme
has strong conceptual connections with optical pumping, and can be extended to
load high-fidelity patterns of atoms.Comment: 12 pages, 7 figures, RevTex
Large Area Crop Inventory Experiment (LACIE). Intensive test site assessment report
There are no author-identified significant results in this report
QUANTITATIVE ANALYSIS OF REPAIRED AND UNREPAIRED DAMAGE TO TRILOBITES FROM THE CAMBRIAN (STAGE 4, DRUMIAN) IBERIAN CHAINS, NE SPAIN
Repaired fossil skeletons provide the opportunity to study predation rates, repair mechanisms, and ecological interactions in deep time. Trilobites allow the study of repaired damage over long time periods and large geographic areas due to their longevity as a group, global distribution, and well-preserved mineralized exoskeletons. Repair frequencies on trilobites from three sites representing offshore marine environments in the Iberian Chains (Spain) show no injuries on 45 complete redlichiid thoraces from Minas Tierga (Huérmeda Formation, Cambrian Series 2, Stage 4), or 23 complete Eccaparadoxides pradoanus thoraces from Mesones de Isuela (Murero Formation, Cambrian Series 3, Drumian). Ten injuries on 69 E. pradoanus thoraces from Purujosa (Murero Formation, Cambrian Series 3, Drumian) were noted. There is no evidence for laterally asymmetric predation or size selection on the trilobites in this study. Weak evidence for selection for the rear of the thorax is documented. A series of injured trilobites illustrates four stages of the healing process. Analysis of injury locations and frequency suggests that injuries to these trilobites are predatory in origin. Semilandmark analysis of previously described exoskeletons with unrepaired damage assigned to the ichnotaxon Bicrescomanducator serratus alongside newly collected damaged exoskeletons from Purujosa (Mansilla and Murero Formations, Stage 5, Drumian), Mesones de Isuela (Murero Formation, Drumian), and Minas Tierga (Huérmeda Formation, Stage 4) found that shapes of biotic and abiotic breaks could not be distinguished.Department of Zoology, University of Oxford, Reino UnidoInstitute of Earth Sciences, University of Lausanne, SuizaPaleoscience Research Centre School of Environmental and Rural Science, University of New England, AustraliaUnidad de Zaragoza, Instituto Geológico y Minero de España, EspañaUnidad Asociada en Ciencias de la Tierra, Universidad de Zaragoza, Españ
Don't break a leg: Running birds from quail to ostrich prioritise leg safety and economy in uneven terrain
Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics
Two-point correlation properties of stochastic "cloud processes''
We study how the two-point density correlation properties of a point particle
distribution are modified when each particle is divided, by a stochastic
process, into an equal number of identical "daughter" particles. We consider
generically that there may be non-trivial correlations in the displacement
fields describing the positions of the different daughters of the same "mother"
particle, and then treat separately the cases in which there are, or are not,
correlations also between the displacements of daughters belonging to different
mothers. For both cases exact formulae are derived relating the structure
factor (power spectrum) of the daughter distribution to that of the mother.
These results can be considered as a generalization of the analogous equations
obtained in ref. [1] (cond-mat/0409594) for the case of stochastic displacement
fields applied to particle distributions. An application of the present results
is that they give explicit algorithms for generating, starting from regular
lattice arrays, stochastic particle distributions with an arbitrarily high
degree of large-scale uniformity.Comment: 14 pages, 3 figure
Mean-Field Interacting Boson Random Point Fields in Weak Harmonic Traps
A model of the mean-field interacting boson gas trapped by a weak harmonic
potential is considered by the \textit{boson random point fields} methods. We
prove that in the Weak Harmonic Trap (WHT) limit there are two phases
distinguished by the boson condensation and by a different behaviour of the
local particle density. For chemical potentials less than a certain critical
value, the resulting Random Point Field (RPF) coincides with the usual boson
RPF, which corresponds to a non-interacting (ideal) boson gas. For the chemical
potentials greater than the critical value, the boson RPF describes a divergent
(local) density, which is due to \textit{localization} of the macroscopic
number of condensed particles. Notice that it is this kind of transition that
observed in experiments producing the Bose-Einstein Condensation in traps
Global Versus Local Computations: Fast Computing with Identifiers
This paper studies what can be computed by using probabilistic local
interactions with agents with a very restricted power in polylogarithmic
parallel time. It is known that if agents are only finite state (corresponding
to the Population Protocol model by Angluin et al.), then only semilinear
predicates over the global input can be computed. In fact, if the population
starts with a unique leader, these predicates can even be computed in a
polylogarithmic parallel time. If identifiers are added (corresponding to the
Community Protocol model by Guerraoui and Ruppert), then more global predicates
over the input multiset can be computed. Local predicates over the input sorted
according to the identifiers can also be computed, as long as the identifiers
are ordered. The time of some of those predicates might require exponential
parallel time. In this paper, we consider what can be computed with Community
Protocol in a polylogarithmic number of parallel interactions. We introduce the
class CPPL corresponding to protocols that use , for some k,
expected interactions to compute their predicates, or equivalently a
polylogarithmic number of parallel expected interactions. We provide some
computable protocols, some boundaries of the class, using the fact that the
population can compute its size. We also prove two impossibility results
providing some arguments showing that local computations are no longer easy:
the population does not have the time to compare a linear number of consecutive
identifiers. The Linearly Local languages, such that the rational language
, are not computable.Comment: Long version of SSS 2016 publication, appendixed version of SIROCCO
201
A model for the distribution of aftershock waiting times
In this work the distribution of inter-occurrence times between earthquakes
in aftershock sequences is analyzed and a model based on a non-homogeneous
Poisson (NHP) process is proposed to quantify the observed scaling. In this
model the generalized Omori's law for the decay of aftershocks is used as a
time-dependent rate in the NHP process. The analytically derived distribution
of inter-occurrence times is applied to several major aftershock sequences in
California to confirm the validity of the proposed hypothesis.Comment: 4 pages, 3 figure
Many-body Anderson localization in one dimensional systems
We show, using quasi-exact numerical simulations, that Anderson localization
of one-dimensional particles in a disordered potential survives in the presence
of attractive interaction between particles. The localization length of the
composite particle can be computed analytically for weak disorder and is in
good agreement with the quasi-exact numerical observations using Time Evolving
Block Decimation. Our approach allows for simulation of the entire experiment
including the final measurement of all atom positions.Comment: 12pp, 5 fig, version accepted in NJ
- …