10,269 research outputs found
Collisions and close encounters involving massive main-sequence stars
We study close encounters involving massive main sequence stars and the
evolution of the exotic products of these encounters as common--envelope
systems or possible hypernova progenitors. We show that parabolic encounters
between low-- and high--mass stars and between two high--mass stars with small
periastrons result in mergers on timescales of a few tens of stellar freefall
times (a few tens of hours). We show that such mergers of unevolved low--mass
stars with evolved high--mass stars result in little mass loss (
M) and can deliver sufficient fresh hydrogen to the core of the
collision product to allow the collision product to burn for several million
years. We find that grazing encounters enter a common--envelope phase which may
expel the envelope of the merger product. The deposition of energy in the
envelopes of our merger products causes them to swell by factors of .
If these remnants exist in very densely-populated environments
( pc), they will suffer further collisions which may
drive off their envelopes, leaving behind hard binaries. We show that the
products of collisions have cores rotating sufficiently rapidly to make them
candidate hypernova/gamma--ray burst progenitors and that of massive
stars may suffer collisions, sufficient for such events to contribute
significantly to the observed rates of hypernovae and gamma--ray bursts.Comment: 15 pages, 13 figures, LaTeX, to appear in MNRAS (in press
Ionization--induced star formation V: Triggering in partially unbound clusters
We present the fourth in a series of papers detailing our SPH study of the
effects of ionizing feedback from O--type stars on turbulent star forming
clouds. Here, we study the effects of photoionization on a series of initially
partially unbound clouds with masses ranging from --M
and initial sizes from 2.5-45pc. We find that ionizing feedback profoundly
affects the structure of the gas in most of our model clouds, creating large
and often well-cleared bubble structures and pillars. However, changes in the
structures of the embedded clusters produced are much weaker and not well
correlated to the evolution of the gas. We find that in all cases, star
formation efficiencies and rates are reduced by feedback and numbers of objects
increased, relative to control simulations. We find that local triggered star
formation does occur and that there is a good correlation between triggered
objects and pillars or bubble walls, but that triggered objects are often
spatially-mixed with those formed spontaneously. Some triggered objects acquire
large enough masses to become ionizing sources themselves, lending support to
the concept of propagating star formation. We find scant evidence for spatial
age gradients in most simulations, and where we do see them, they are not a
good indicator of triggering, as they apply equally to spontaneously-formed
objects as triggered ones. Overall, we conclude that inferring the global or
local effects of feedback on stellar populations from observing a system at a
single epoch is very problematic.Comment: 17 pages, 11 figures (mostly degraded to get under the submission
size limit), accepted by MNRA
Ionizing feedback from massive stars in massive clusters III: Disruption of partially unbound clouds
We extend our previous SPH parameter study of the effects of photoionization
from O-stars on star-forming clouds to include initially unbound clouds. We
generate a set of model clouds in the mass range M
with initial virial ratios =2.3, allow them to form
stars, and study the impact of the photoionizing radiation produced by the
massive stars. We find that, on the 3Myr timescale before supernovae are
expected to begin detonating, the fractions of mass expelled by ionizing
feedback is a very strong function of the cloud escape velocities. High-mass
clouds are largely unaffected dynamically, while lower-mass clouds have large
fractions of their gas reserves expelled on this timescale. However, the
fractions of stellar mass unbound are modest and significant portions of the
unbound stars are so only because the clouds themselves are initially partially
unbound. We find that ionization is much more able to create well-cleared
bubbles in the unbound clouds, owing to their intrinsic expansion, but that the
presence of such bubbles does not necessarily indicate that a given cloud has
been strongly influenced by feedback. We also find, in common with the bound
clouds from our earlier work, that many of the systems simulated here are
highly porous to photons and supernova ejecta, and that most of them will
likely survive their first supernova explosions.Comment: 14 pages, 13 figures (some degraded and greyscaled), accepted by
MNRA
[Space environment analyses, human performance studies, and gravitational field effects on enzymatic reactions]
Space environment analyses, human performance studies, and gravitational field effect on enzymatic reaction
Buffalo National River Ecosystems - Part II
The priorities were established for the Buffalo National River Ecosystem Studies through meetings and correspondence with Mr. Roland Wauer and other personnel of the Office of Natural Sciences, Southwest Region of the National Park Service. These priorities were set forth in the appendix of contract no. CX 700050443 dated May 21, 1975
THE PROBLEM OF ANTICOAGULANT RODENTICIDE RESISTANCE IN THE UNITED STATES
Resistance of commensal rodents to anticoagulant rodenticides is not a new phenomenon. Its confirmed presence in several areas of northern Europe is wel1-documented (Jackson 1969, 1972; Bentley 1969; Lund 1969). Not until 1971 was a similar situation with the Norway rat (Rattus norvegicus) to be demonstrated in the United States (Jackson et al. 1971). Because it represents an initial occurrence, the site and background observations will be described in some detail. The rural area involved around Cleveland School in Johnson County is 25 miles SE of Raleigh, N. C. and about five miles in diameter (fig. 1). The typical farm is small (20-25A) and produces tobacco, corn, and cotton. Animal sheds (some left from days of mule power), small barns, tobacco sheds, and granaries are characteristic. Dirt floors and perforated foundation walls are common. Cleanliness is not a prime requisite, and considerable harborage (farm machinery and parts, lumber piles, tall weeds, junk, old cars) exists. Stored grains are easily accessible, as are dry foods, animal feed, and special supplements (table 1)
Thermal/structural analysis of a transpiration cooled nozzle
The 8-foot High Temperature Tunnel (HTT) at LaRC is a combustion driven, high enthalpy blow down wind tunnel. In Mar. 1991, during check out of the transpiration cooled nozzle, pieces of platelets were found in the tunnel test section. It was determined that incorrect tolerancing between the platelets and the housing was the primary cause of the platelet failure. An analysis was performed to determine the tolerance layout between the platelets and the housing to meet the structural and performance criteria under a range of thermal, pressure, and bolt preload conditions. Three recommendations resulted as a product of this analysis
APM 08279+5255: Keck Near- and Mid-IR High-Resolution Imaging
We present Keck high-resolution near-IR (2.2 microns; FWHM~0.15") and mid-IR
(12.5 microns; FWHM~0.4") images of APM08279+5255, a z=3.91 IR-luminous BALQSO
with a prodigious apparent bolometric luminosity of 5x10^{15} Lsun, the largest
known in the universe. The K-band image shows that this system consists of
three components, all of which are likely to be the gravitationally lensed
images of the same background object, and the 12.5 micron image shows a
morphology consistent with such an image configuration. Our lens model suggests
that the magnification factor is ~100 from the restframe UV to mid-IR, where
most of the luminosity is released. The intrinsic bolometric luminosity and IR
luminosity of APM08279+5255 are estimated to be 5x10^{13} Lsun and 1x10^{13}
Lsun, respectively. This indicates that APM 08279+5255 is intriniscally
luminous, but it is not the most luminous object known. As for its dust
contents, little can be determined with the currently available data due to the
uncertainties associated with the dust emissivity and the possible effects of
differential magnification. We also suggest that the lensing galaxy is likely
to be a massive galaxy at z~3.Comment: 32 pages, 4 tables, 11 figures; Accepted for publication in Ap
- …