24 research outputs found
Absorption and optimal plasmonic resonances for small ellipsoidal particles in lossy media
A new simplified formula is derived for the absorption cross section of small dielectric ellipsoidal particles embedded in lossy media. The new expression leads directly to a closed form solution for the optimal conjugate match with respect to the surrounding medium, i.e. the optimal permittivity of the ellipsoidal particle that maximizes the absorption at any given frequency. This defines the optimal plasmonic resonance for the ellipsoid. The optimal conjugate match represents a metamaterial in the sense that the corresponding optimal permittivity function may have negative real part (inductive properties), and can not in general be implemented as a passive material over a given bandwidth. A necessary and sufficient condition is derived for the feasibility of tuning the Drude model to the optimal conjugate match at a single frequency, and it is found that all the prolate spheroids and some of the (not too flat) oblate spheroids can be tuned into optimal plasmonic resonance at any desired center frequency. Numerical examples are given to illustrate the analysis. Except for the general understanding of plasmonic resonances in lossy media, it is also anticipated that the new results can be useful for feasibility studies with e.g. the radiotherapeutic hyperthermia based methods to treat cancer based on electrophoretic heating in gold nanoparticle suspensions using microwave radiation
A simplified analytical approach to calculation of the electromagnetic behavior of left-handed metamaterials with a graded refractive index profile
We investigated the spectral properties of a new class of nanostructured artificial composite materials with tailored electromagnetic response, i.e. negative refractive index materials, also known as "left-handed" metamaterials. We analyzed structures incorporating both ordinary positive index media and negative refractive index metamaterials where the interface may be graded to an arbitrary degree. Utilizing a modified version of the Rosen-Morse function, we derived analytical expressions for the field intensity and spectral reflection and transmission through a graded interface between positive and negative index materials. We compared our results to numerical solutions obtained using the transfer matrix technique.
Modification of Coulomb's law in closed spaces
We obtain a modified version of Coulomb's law in two- and three-dimensional
closed spaces. We demonstrate that in a closed space the total electric charge
must be zero. We also discuss the relation between total charge neutrality of a
isotropic and homogenous universe to whether or not its spatial sector is
closed.Comment: 11 pages, 3 figure
Parameter studies on optimal absorption and electrophoretic resonances in lossy media
This paper summarizes and elaborates on some new results on the optimal absorption in small spherical suspensions based on electrophoretic (plasmonic) resonances and lossy surrounding media. The main application here is to study the physical limitations for radio frequency absorption in gold nanoparticle (GNP) suspensions and its potential to achieve GNP targeted hyperthermia in cancer therapy. Numerical parameter studies are included to demonstrate the analysis approach
On the physical limitations for radio frequency absorption in gold nanoparticle suspensions
This paper presents a study of the physical limitations for radio frequency absorption in gold nanoparticle (GNP) suspensions. A spherical geometry is considered consisting of a spherical suspension of colloidal GNPs characterized as an arbitrary passive dielectric material which is immersed in an arbitrary lossy medium. A relative heating coefficient and a corresponding optimal near field excitation are defined taking the skin effect of the surrounding medium into account. The classical Mie theory for lossy media is also revisited, and it is shown that the optimal permittivity function yielding a maximal absorption inside the spherical suspension is a conjugate match with respect to the surrounding lossy material. A convex optimization approach is used to investigate the broadband realizability of an arbitrary passive material to approximate the desired conjugate match over a finite bandwidth, similar to the approximation of a metamaterial. A narrowband realizability study shows that for a surrounding medium consisting of a weak electrolyte solution, the electromagnetic heating due to the electrophoretic (plasmonic) resonance phenomena inside the spherical GNP suspension can be significant in the microwave regime, provided that the related Drude parameters can be tuned into (or near to) resonance. As a demonstration, some realistic Drude parameters are investigated concerning the volume fraction, mass, and friction constant of the GNPs. The amount of charge that can be accommodated by the GNPs is identified as one of the most important design parameters. However, the problem to reliably model, measure and control the charge number of coated GNPs is not yet fully understood, and is still an open research issue in this field. The presented theory and related physical limitations provide a useful framework for further research in this direction. Future research is also aiming at an expansion towards arbitrary suspension geometries and the inclusion of thermodynamical analysis
Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications
Antennas in wireless sensor networks (WSNs) are characterized by the enhanced capacity of the network, longer range of transmission, better spatial reuse, and lower interference. In this paper, we propose a planar patch antenna for mobile communication applications operating at 1.8, 3.5, and 5.4 GHz. A planar microstrip patch antenna (MPA) consists of two F-shaped resonators that enable operations at 1.8 and 3.5 GHz while operation at 5.4 GHz is achieved when the patch is truncated from the middle. The proposed planar patch is printed on a low-cost FR-4 substrate that is 1.6 mm in thickness. The equivalent circuit model is also designed to validate the reflection coefficient of the proposed antenna with the S-11 obtained from the circuit model. It contains three RLC (resistor-inductor-capacitor) circuits for generating three frequency bands for the proposed antenna. Thereby, we obtained a good agreement between simulation and measurement results. The proposed antenna has an elliptically shaped radiation pattern at 1.8 and 3.5 GHz, while the broadside directional pattern is obtained at the 5.4 GHz frequency band. At 1.8, 3.5, and 5.4 GHz, the simulated peak realized gains of 2.34, 5.2, and 1.42 dB are obtained and compared to the experimental peak realized gains of 2.22, 5.18, and 1.38 dB at same frequencies. The results indicate that the proposed planar patch antenna can be utilized for mobile applications such as digital communication systems (DCS), worldwide interoperability for microwave access (WiMAX), and wireless local area networks (WLAN)
A parametric model for the changes in the complex valued conductivity of a lung during tidal breathing
Classical homogenization theory based on the Hashin-Shtrikman coated ellipsoids is used to model the changes in the complex valued conductivity (or admittivity) of a lung during tidal breathing. Here, the lung is modeled as a two-phase composite material where the alveolar air-filling corresponds to the inclusion phase. The theory predicts a linear relationship between the real and the imaginary parts of the change in the complex valued conductivity of a lung during tidal breathing, and where the loss cotangent of the change is approximately the same as of the effective background conductivity and hence easy to estimate. The theory is illustrated with numerical examples, as well as by using reconstructed Electrical Impedance Tomography (EIT) images based on clinical data from an ongoing study within the EU-funded CRADL project. The theory may be potentially useful for improving the imaging algorithms and clinical evaluations in connection with lung EIT for respiratory management and monitoring in neonatal intensive care units
A cosmological dust model with extended f(chi) gravity
Introducing a fundamental constant of nature with dimensions of acceleration
into the theory of gravity makes it possible to extend gravity in a very
consistent manner. At the non-relativistic level a MOND-like theory with a
modification in the force sector is obtained, which is the limit of a very
general metric relativistic theory of gravity. Since the mass and length scales
involved in the dynamics of the whole universe require small accelerations of
the order of Milgrom's acceleration constant a_0, it turns out that the
relativistic theory of gravity can be used to explain the expansion of the
universe. In this work it is explained how to use that relativistic theory of
gravity in such a way that the overall large-scale dynamics of the universe can
be treated in a pure metric approach without the need to introduce dark matter
and/or dark energy components.Comment: 7 pages, 1 figure. Accepted for publication in the European Physical
Journal
Electromagnetic Enhancement in Lossy Optical Transition Metamaterials
We investigate the effect of anomalous field enhancement in metamaterials
where the effective refractive index gradually changes from positive to
negative values, i.e. transition metamaterials. We demonstrate that
considerable field enhancement can be achieved in lossy optical transition
metamaterials that have electromagnetic material properties obtained from
experimental data. The field enhancement factor is found to be
polarization-dependent and largely determined by the material parameters and
the width of the transition layer