80 research outputs found

    Discussion on the paper: Hypotheses testing by convex optimization by Goldenshluger, Juditsky and Nemirovski

    Full text link
    We briefly discuss some interesting questions related to the paper "Hypotheses testing by convex optimization" by Goldenshluger, Juditsky and Nemirovski.Comment: To appear in the EJ

    Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case

    Get PDF
    Asymptotic local equivalence in the sense of Le Cam is established for inference on the drift in multidimensional ergodic diffusions and an accompanying sequence of Gaussian shift experiments. The nonparametric local neighbourhoods can be attained for any dimension, provided the regularity of the drift is sufficiently large. In addition, a heteroskedastic Gaussian regression experiment is given, which is also locally asymptotically equivalent and which does not depend on the centre of localisation. For one direction of the equivalence an explicit Markov kernel is constructed.Comment: 03 May 2005, 23 page

    Second-order asymptotic expansion for a non-synchronous covariation estimator

    Get PDF
    In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers \cite{Hay-Yos03, Hay-Yos04}, we derive second-order asymptotic expansions for the distribution of the Hayashi-Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition of the estimator's distribution in the Gaussian set-up, a stochastic decomposition of the estimator itself and an accurate evaluation of the Malliavin covariance. To give a concrete example, we compute the constants involved in the resulting expansions for the particular case of sampling scheme generated by two independent Poisson processes

    Simple proof of the risk bound for denoising by exponential weights for asymmetric noise distributions

    Full text link
    In this note, we consider the problem of aggregation of estimators in order to denoise a signal. The main contribution is a short proof of the fact that the exponentially weighted aggregate satisfies a sharp oracle inequality. While this result was already known for a wide class of symmetric noise distributions, the extension to asymmetric distributions presented in this note is new

    Sharp Oracle Inequalities for Aggregation of Affine Estimators

    Get PDF
    We consider the problem of combining a (possibly uncountably infinite) set of affine estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities in discrete but also in continuous settings. The framework is general enough to cover the combinations of various procedures such as least square regression, kernel ridge regression, shrinking estimators and many other estimators used in the literature on statistical inverse problems. As a consequence, we show that the proposed aggregate provides an adaptive estimator in the exact minimax sense without neither discretizing the range of tuning parameters nor splitting the set of observations. We also illustrate numerically the good performance achieved by the exponentially weighted aggregate

    Minimax testing of a composite null hypothesis defined via a quadratic functional in the model of regression

    Get PDF
    We consider the problem of testing a particular type of composite null hypothesis under a nonparametric multivariate regression model. For a given quadratic functional QQ, the null hypothesis states that the regression function ff satisfies the constraint Q[f]=0Q[f]=0, while the alternative corresponds to the functions for which Q[f]Q[f] is bounded away from zero. On the one hand, we provide minimax rates of testing and the exact separation constants, along with a sharp-optimal testing procedure, for diagonal and nonnegative quadratic functionals. We consider smoothness classes of ellipsoidal form and check that our conditions are fulfilled in the particular case of ellipsoids corresponding to anisotropic Sobolev classes. In this case, we present a closed form of the minimax rate and the separation constant. On the other hand, minimax rates for quadratic functionals which are neither positive nor negative makes appear two different regimes: "regular" and "irregular". In the "regular" case, the minimax rate is equal to n1/4n^{-1/4} while in the "irregular" case, the rate depends on the smoothness class and is slower than in the "regular" case. We apply this to the issue of testing the equality of norms of two functions observed in noisy environments

    Statistical inference in compound functional models

    Get PDF
    We consider a general nonparametric regression model called the compound model. It includes, as special cases, sparse additive regression and nonparametric (or linear) regression with many covariates but possibly a small number of relevant covariates. The compound model is characterized by three main parameters: the structure parameter describing the "macroscopic" form of the compound function, the "microscopic" sparsity parameter indicating the maximal number of relevant covariates in each component and the usual smoothness parameter corresponding to the complexity of the members of the compound. We find non-asymptotic minimax rate of convergence of estimators in such a model as a function of these three parameters. We also show that this rate can be attained in an adaptive way
    corecore