7,353 research outputs found
How to enhance crop production and nitrogen fluxes? A result-oriented scheme to evaluate best agri-environmental measures in Veneto Region, Italy
The cost-effectiveness of adopting agri-environmental measures (AEMs) in Europe, which combine agricultural productions with reduced N losses, is debated due to poorly targeted site-specific funding that is allocated regardless of local variability. An integrated DAYCENT model-GIS platform was developed combining pedo-climatic and agricultural systems information. The aim was to evaluate best strategies to improve N fluxes of agro-ecosystems within a perspective of sustainable intensification. Indicators of agronomic efficiency and environmental quality were considered. The results showed that agronomic benefits were observed with a continuous soil cover (conservation agriculture and cover crops), which enhanced nitrogen use efficiency (+17%) and crop yields (+34%), although in some cases these might be overestimated due to modelling limitations. An overall environmental improvement was found with continuous soil cover and long-term change from mineral to organic inputs (NLeach 45 Mg ha 121), which were effective in the sandy soils of western and eastern Veneto with low SOM, improving the soil-water balance and nutrients availability over time. Results suggest that AEM subsidies should be allocated at a site-specific level that includes pedo-climatic variability, following a result-oriented approach
On-surface and Subsurface Adsorption of Oxygen on Stepped Ag(210) and Ag(410) Surfaces
The adsorption of atomic oxygen and its inclusion into subsurface sites on
Ag(210) and Ag(410) surfaces have been investigated using density functional
theory. We find that--in the absence of adatoms on the first metal
layer--subsurface adsorption results in strong lattice distortion which makes
it energetically unfavoured. However subsurface sites are significantly
stabilised when a sufficient amount of O adatoms is present on the surface. At
high enough O coverage on the Ag(210) surface the mixed on-surface + subsurface
O adsorption is energetically favoured with respect to the on-surface only
adsorption. Instead, on the Ag(410) surface, at the coverage we have considered
(3/8 ML), the existence of stable terrace sites makes the subsurface O
incorporation less favourable. These findings are compatible with the results
of recent HREEL experiments which have actually motivated this work.Comment: 8 pages, 4 figures and 1 tabl
Systematic TLM Measurements of NiSi and PtSi Specific Contact Resistance to n- and p-Type Si in a Broad Doping Range
We present the data on specific silicide-to-silicon contact resistance (Ïc) obtained using optimized transmission-line model structures, processed for a broad range of various n- and p-type Si doping levels, with NiSi and PtSi as the silicides. These structures, despite being attractive candidates for embedding in the CMOS processes, have not been used for NiSi, which is the material of choice in modern technologies. In addition, no database for NiSiâsilicon contact resistance exists, particularly for a broad range of doping levels. This letter provides such a database, using PtSi extensively studied earlier as a reference
What sets the magnetic field strength and cycle period in solar-type stars?
Two fundamental properties of stellar magnetic fields have been determined by
observations for solar-like stars with different Rossby numbers (Ro), namely,
the magnetic field strength and the magnetic cycle period. The field strength
exhibits two regimes: 1) for fast rotation it is independent of Ro, 2) for slow
rotation it decays with Ro following a power law. For the magnetic cycle period
two regimes of activity, the active and inactive branches, also have been
identified. For both of them, the longer the rotation period, the longer the
activity cycle. Using global dynamo simulations of solar like stars with Rossby
numbers between ~0.4 and ~2, this paper explores the relevance of rotational
shear layers in determining these observational properties. Our results,
consistent with non-linear alpha^2-Omega dynamos, show that the total magnetic
field strength is independent of the rotation period. Yet at surface levels,
the origin of the magnetic field is determined by Ro. While for Ro<1 it is
generated in the convection zone, for Ro>1 strong toroidal fields are generated
at the tachocline and rapidly emerge towards the surface. In agreement with the
observations, the magnetic cycle period increases with the rotational period.
However, a bifurcation is observed for Ro~1, separating a regime where
oscillatory dynamos operate mainly in the convection zone, from the regime
where the tachocline has a predominant role. In the latter the cycles are
believed to result from the periodic energy exchange between the dynamo and the
magneto-shear instabilities developing in the tachocline and the radiative
interior.Comment: 43 pages, 14 figures, accepted for publication in The Astrophysical
Journa
The geometry of Bayesian programming
We give two geometry of interaction models for a typed λ-calculus with recursion endowed with operators for sampling from a continuous uniform distribution and soft conditioning, namely a paradigmatic calculus for higher-order Bayesian programming. The models are based on the category of measurable spaces and partial measurable functions, and the category of measurable spaces and s-finite kernels, respectively. The former is proved adequate with respect to both a distribution-based and a sampling-based operational semantics, while the latter is proved adequate with respect to a sampling-based operational semantics
- âŠ