1,632 research outputs found
New multiplexing scheme for monitoring fiber optic Bragg grating sensors in the coherence domain
A new multiplexing scheme for monitoring fiber optic Bragg gratings in the coherence domain has been developed. Grating pairs with different grating distances are distributed along a fiber line, and interference between their reflections is monitored with a scanning Michelson interferometer. The Bragg wavelength of the individual sensor elements is determined from the interference signal frequency
Financial Disagreements and Marital Conflict Tactics
Recent studies have suggested that relative to other types of marital disagreement, financial disagreements are more problematic for couples. Using data from the National Survey of Families and Households (N = 3,861 couples), we tested whether different types of marital disagreements predicted self-reported marital conflict tactics. Considering the findings overall, financial disagreements were among the consistent top predictors of conflict tactics, including using heated arguments more frequently than calm discussion. Contrary to previous studies, however, disagreements over housework also predicted conflict tactics about as strongly as financial disagreements. Husbands’ reports of financial disagreements were more closely associated with conflict tactics than wives’ reports
Review: emerging concepts in the pathogenesis of tendinopathy
Tendinopathy is a common clinical problem and has a significant disease burden attached, not only in terms of health care costs, but also for patients directly in terms of time off work and impact upon quality of life. Controversy surrounds the pathogenesis of tendinopathy, however the recent systematic analysis of the evidence has demonstrated that many of the claims of an absence of inflammation in tendinopathy were more based around belief than robust scientific data. This review is a summary of the emerging research in this topical area, with a particular focus on the role of neuronal regulation and inflammation in tendinopathy
Recommended from our members
A texture-processing model of the 'visual sense of number'
It has been suggested that numerosity is an elementary quality of perception, similar to colour. If so (and despite considerable investigation), its mechanism remains unknown. Here, we show that observers require on average a massive difference of approximately 40% to detect a change in the number of objects that vary irrelevantly in blur, contrast and spatial separation, and that some naive observers require even more than this. We suggest that relative numerosity is a type of texture discrimination and that a simple model computing the contrast energy at fine spatial scales in the image can perform at least as well as human observers. Like some human observers, this mechanism finds it harder to discriminate relative numerosity in two patterns with different degrees of blur, but it still outpaces the human. We propose energy discrimination as a benchmark model against which more complex models and new data can be tested
Maternal obesity has little effect on the immediate offspring but impacts on the next generation
Maternal obesity during pregnancy has been linked to an increased risk of obesity and cardiometabolic disease in the offspring, a phenomenon attributed to developmental programming. Programming effects may be transmissible across generations through both maternal and paternal inheritance, although the mechanisms remain unclear. Using a mouse model, we explored the effects of moderate maternal diet-induced obesity (DIO) on weight gain and glucose-insulin homeostasis in first-generation (F1) and second-generation offspring. DIO was associated with insulin resistance, hyperglycemia and dyslipidemia before pregnancy. Birth weight was reduced in female offspring of DIO mothers (by 6%, P = .039), and DIO offspring were heavier than controls at weaning (males by 47%, females by 27%), however there were no differences in glucose tolerance, plasma lipids, or hepatic gene expression at 6 months. Despite the relative lack of effects in the F1, we found clear fetal growth restriction and persistent metabolic changes in otherwise unmanipulated second-generation offspring with effects on birth weight, insulin levels, and hepatic gene expression that were transmitted through both maternal and paternal lines. This suggests that the consequences of the current dietary obesity epidemic may also have an impact on the descendants of obese individuals, even when the phenotype of the F1 appears largely unaffected
Effects of Stroboscopic Vision on Depth Jump Motor Control: A Biomechanical Analysis
Researchers commonly use the \u27free-fall\u27 paradigm to investigate motor control during landing impacts, particularly in drop landings and depth jumps (DJ). While recent studies have focused on the impact of vision on landing motor control, previous research fully removed continuous visual input, limiting ecological validity. The aim of this investigation was to evaluate the effects of stroboscopic vision on depth jump (DJ) motor control. Ground reaction forces (GRF) and lower-extremity surface electromyography (EMG) were collected for 20 young adults (11 male; 9 female) performing six depth jumps (0.51 m drop height) in each of two visual conditions (full vision vs. 3 Hz stroboscopic vision). Muscle activation magnitude was estimated from EMG signals using root-mean-square amplitudes (RMS) over specific time intervals (150 ms pre-impact; 30–60 ms, 60–85 ms, and 85–120 ms post-impact). The main effects of and interactions between vision and trial number were assessed using two-way within-subjects repeated measures analyses of variance. Peak GRF was 6.4% greater, on average, for DJs performed with stroboscopic vision compared to full vision (p = 0.042). Tibialis anterior RMS EMG during the 60–85 ms post-impact time interval was 14.1% lower for DJs performed with stroboscopic vision (p = 0.020). Vastus lateralis RMS EMG during the 85–120 ms post-impact time interval was 11.8% lower for DJs performed with stroboscopic vision (p = 0.017). Stroboscopic vision altered DJ landing mechanics and lower-extremity muscle activation. The observed increase in peak GRF and reduction in RMS EMG of the tibialis anterior and vastus lateralis post-landing may signify a higher magnitude of lower-extremity musculotendinous stiffness developed pre-landing. The results indicate measurable sensorimotor disruption for DJs performed with stroboscopic vision, warranting further research and supporting the potential use of stroboscopic vision as a sensorimotor training aid in exercise and rehabilitation. Stroboscopic vision could induce beneficial adaptations in multisensory integration, applicable to restoring sensorimotor function after injury and preventing injuries in populations experiencing landing impacts at night (e.g., military personnel)
Vestibular contributions to lateral stabilization are bilaterally dependent during split belt walking
Vestibular information is critical for maintaining balance during locomotion, and is known to be attenuated with increasing locomotor velocity and cadence. This attenuation is muscle and phase dependent, and is thought to reflect the functional contribution of each muscle to balance control during each stride of the gait cycle. Bilaterally, the vestibular coupling is mirrored relative to the gait cycle as each leg undergoes similar modulation with variation in phase, velocity and cadence. Here, we asked whether the modulation of the vestibular contribution to each limb is bilaterally dependent. By using a split-belt treadmill with asymmetric belt speeds, we can control the locomotion properties of each leg and compare the vestibular modulation to symmetric conditions. We hypothesized that bilaterally symmetric vestibular modulation would indicate leg independent vestibular influence while bilaterally asymmetric vestibular modulation would indicate leg dependent vestibular influence. Subjects were exposed to binaural bipolar stochastic vestibular stimulation (0-25 Hz) during symmetric and asymmetric walking conditions. Symmetric trials were performed at belt speeds of 0.4 and 0.8 m/s and for 10 min. The asymmetric trial was performed at belt speeds of 0.4 and 0.8 m/s for 16 min. Subjects walked with a cadence of 78 steps/min which was easily maintained in both limbs. EMG of the bilateral medial gastrocnemii and three-dimensional ground reaction force and torques were collected. Only the last 340 strides (~ 9 min of data) were used in the analysis to avoid the adaptation that typically occurs within the first 250 strides (~ 6 min) of asymmetric walking. Significant muscle activity and lateral ground reaction forces (P < 0.01) were correlated to the input stimuli in all trials. Stimulus-EMG and -lateral ground reaction force correlations decreased at higher belt speeds during symmetric walking, as previously reported. During the split belt condition, the magnitude of correlations stimulus-EMG and -force were bilaterally asymmetric and different from their symmetric counterparts. During the asymmetric condition correlations decreased for the slow leg, but more closely resembled the responses observed during slow symmetric walking, and increased for the fast leg, but more closely resembled the responses observed during fast symmetric walking. These results indicate that the modulation of vestibular reflexes is dependent upon the specific kinematics of each leg but bilaterally linked to respond to the properties of the locomotion pattern
Time Delays in the Synchronization of Chaotic Coupled Systems with Feedback
The synchronized excitable behavior of two coupled chaotic diode lasers with
feedback was experimental and numerically studied. We determine the relation
between the observed delay times in synchronized Low Frequency Fluctuation
spikes and the coupling and the feedback times in the lasers.Comment: 5 pages, 6 figure
An inability to exclude visual noise in migraine
- Purpose: People with migraine are relatively poor at judging the direction of motion of coherently moving signal dots when interspersed with noise dots drifting in random directions, a task known as motion coherence. Although this has been taken as evidence of impoverished global pooling of motion signals, it could also arise from unreliable coding of local direction (of each dot), or an inability to segment signal from noise (noise-exclusion). The aim of this study was to determine how these putative limits contribute to impoverished motion processing in migraine.
- Methods: Twenty-two participants with migraine (mean age, 34.7 ± 8.3 years; 16 female) and 22 age- and sex-matched controls (mean age, 34.4 ± 6.2 years) performed a motion-coherence task and a motion-equivalent noise task, the latter quantifying local and global limits on motion processing. In addition, participants were tested on analogous equivalent noise paradigms involving judgments of orientation and size, so that the specificity of any findings (to visual dimension) could be ascertained.
- Results: Participants with migraine exhibited higher motion-coherence thresholds than controls (P = 0.01, independent t-test). However, this difference could not be attributed to deficits in either local or global processing since they performed normally on all equivalent noise tasks (P > 0.05, multivariate ANOVA).
- Conclusions: These findings indicate that motion perception in the participants with migraine was limited by an inability to exclude visual noise. We suggest that this is a defining characteristic of visual dysfunction in migraine, a theory that has the potential to integrate a wide range of findings in the literature
- …