4 research outputs found

    Linguistic and Gender Variation in Speech Emotion Recognition using Spectral Features

    Full text link
    This work explores the effect of gender and linguistic-based vocal variations on the accuracy of emotive expression classification. Emotive expressions are considered from the perspective of spectral features in speech (Mel-frequency Cepstral Coefficient, Melspectrogram, Spectral Contrast). Emotions are considered from the perspective of Basic Emotion Theory. A convolutional neural network is utilised to classify emotive expressions in emotive audio datasets in English, German, and Italian. Vocal variations for spectral features assessed by (i) a comparative analysis identifying suitable spectral features, (ii) the classification performance for mono, multi and cross-lingual emotive data and (iii) an empirical evaluation of a machine learning model to assess the effects of gender and linguistic variation on classification accuracy. The results showed that spectral features provide a potential avenue for increasing emotive expression classification. Additionally, the accuracy of emotive expression classification was high within mono and cross-lingual emotive data, but poor in multi-lingual data. Similarly, there were differences in classification accuracy between gender populations. These results demonstrate the importance of accounting for population differences to enable accurate speech emotion recognition.Comment: Presented at AICS 2021 Conference - Machine Learning for Time Series Section Published in CEUR Vol-3105 http://ceur-ws.org/Vol-3105/paper34.pdf This publication has emanated from research supported in part by a Grant from Science Foundation Ireland under Grant number 18/CRT/6222 Associated source code https://github.com/ZacDair/SER_Platform_AICS 12 Pages, 5 Figure

    Classification of Stress via Ambulatory ECG and GSR Data

    Full text link
    In healthcare, detecting stress and enabling individuals to monitor their mental health and wellbeing is challenging. Advancements in wearable technology now enable continuous physiological data collection. This data can provide insights into mental health and behavioural states through psychophysiological analysis. However, automated analysis is required to provide timely results due to the quantity of data collected. Machine learning has shown efficacy in providing an automated classification of physiological data for health applications in controlled laboratory environments. Ambulatory uncontrolled environments, however, provide additional challenges requiring further modelling to overcome. This work empirically assesses several approaches utilising machine learning classifiers to detect stress using physiological data recorded in an ambulatory setting with self-reported stress annotations. A subset of the training portion SMILE dataset enables the evaluation of approaches before submission. The optimal stress detection approach achieves 90.77% classification accuracy, 91.24 F1-Score, 90.42 Sensitivity and 91.08 Specificity, utilising an ExtraTrees classifier and feature imputation methods. Meanwhile, accuracy on the challenge data is much lower at 59.23% (submission #54 from BEaTS-MTU, username ZacDair). The cause of the performance disparity is explored in this work.Comment: Associated Code to enable reproducible experimental work - https://github.com/ZacDair/EMBC_Release SMILE dataset provided by Computational Wellbeing Group (COMPWELL) https://compwell.rice.edu/workshops/embc2022/dataset - https://compwell.rice.edu

    Variance in Classifying Affective State via Electrocardiogram and Photoplethysmography

    Full text link
    Advances in wearable technology have significantly increased the sensitivity and accuracy of devices for recording physiological signals. Commercial off-the-shelf wearable devices can gather large quantities of physiological data un-obtrusively. This enables momentary assessments of human physiology, which provide valuable insights into an individual's health and psychological state. Leveraging these insights provides significant benefits for human-to-computer interaction and personalised healthcare. This work contributes an analysis of variance occurring in features representative of affective states extracted from electrocardiograms and photoplethysmography; subsequently identifies the cardiac measures most descriptive of affective states from both signals and provides insights into signal and emotion-specific cardiac measures; finally baseline performance for automated affective state detection from physiological signals is established.Comment: Associated source code https://github.com/ZacDair/Emo_Phys_Eva
    corecore