8 research outputs found

    Flocculation Settling Characteristics of Ultra-Fine Iron Tailings with Rich Gypsum

    No full text
    Because of the uniqueness of geological mineralization, tailings obtained from Chenchao Iron Mine have low SiO2 content of only 27.80%. Content of Al2O3 and MgO is 13.31% and CaSO4 is 22.09%. The fineness modulus of the ores is large enough for convenient mineral separation, thus resulting in 16.03% −5 μm particles and 27.76% −10 μm particles in the tailings, respectively. The average particle size is only 69.36 μm; it belongs to the category of very fine tailings. The natural sedimentation of tailings is extremely slow due to the comprehensive effects of their physical and chemical properties. Hence, sedimentation tests using four types of flocculating agents are conducted to accelerate the sedimentation of the tailings of Chenchao Iron Mine. Compared with natural sedimentation, the flocculating sedimentation is considerably quicker. Among the four flocculants, the sedimentation of sample using the special BASF flocculant is the fastest. When the tailings of 1 ton add this flocculant of 20 g, the maximum settling concentration reaches 60.98% after 40 min and its special gravity is 1.577 g/cm3, thus it fulfills future requirements of filling technologies. As the largest iron mine in the mid-southern region of China, Chenchao Iron Mine must turn to filling mining. This study can provide technological support for goaf management and environment-friendly treatment of solid waste in the Yangtze River basin, which plays important roles in ecological protection

    Experimental Study on the Fine Iron Ore Tailing Containing Gypsum as Backfill Material

    No full text
    The strength of the filling body is largely affected by the properties of the binder, mineral composition, fineness, and slurry concentration of tailing. In this paper, the rheological test was conducted to determine the slurry concentration of iron ore tailing containing gypsum. Then, the samples made from slurry and three binders, Portland cement, filling plant binder, and Huazhong binder, were tested, respectively. The effects of curing time, binder-tailing ratio by mass (b/t), and slurry concentration on compression strength were investigated. The sample made from Huazhong binder and iron ore tailing presented the largest compression strength

    Numerical Study on Effect of Aggregate Moisture on Mixing Process

    No full text
    During the concrete mixing process, the transition of aggregates from a dry to a moist state introduces a crucial dynamic that significantly influences particle interaction, consequently impacting mixing homogeneity. In this paper, based on the discrete element method, the effect of aggregate moisture on the mixing process of sand and stone was investigated. The interaction between dry particles was described by the Hertz–Mindlin model, while the interaction between wet particles was calculated by the linear cohesion model considering the liquid bridge force. Additionally, a functional relationship between the moisture content and the parameters of the linear cohesive contact model was established. The results show that the numerical method can be employed to simulate the mixing process. Notably, when the moisture content of pebbles ranges from 0% to 0.75% and that of sand ranges from 0% to 10.9%, the linear cohesion model is deemed suitable. The standard deviation of the mixing homogeneity of wet particles is lower than that of dry particles for short mixing time, indicating that a small amount of liquid enhances mixing homogeneity. However, moisture has no obvious effect on mixing homogeneity for a long mixing time. This nuanced understanding of the interplay between moisture, particle interactions, and mixing duration contributes valuable insights to optimize concrete mixing processes

    Study on Natural Settlement Index Characteristics of Iron-Bearing Tailings Applied to Goaf Filling Treatment

    No full text
    In order to provide a technical basis for the subsequent concentration and utilization of the tailings treatment process in an iron ore mine, and to achieve the objectives of cost reduction and sustainable development, the settling concentration and settling capacity of a tailings slurry with an initial concentration of 40% in its natural state were tested in conjunction with the pumping supply concentration index of the beneficiation tailings slurry in a metal mine. The test results show that the iron ore tailings particles settle at an overall fast rate: basically, within 10 to 20 min they are able to reach or approach 85 to 99.5% of the final settling state-related index. During the settling process in the fixed container, at first, the clarified water at the top of the tailings slurry is very turbid. With the passage of time, the clarified water gradually becomes blurred and clear from turbidity, and the interface between the slurry and the water gradually becomes clearer. From the phenomena observed during the settling process and the test parameters such as the net increase in clear water and slurry variation, the maximum settling concentration and settling capacity indicators of 50% and 90% can be reached or approached in 5.5 to 7.25 and 10.5 to 15.5 min after settling, and the maximum settling concentration and settling capacity can be reached or approached in 10 to 20 min after the settling process. As the settling tests and observations continued, the relevant settling parameters basically reached the final settling state within the time period of 20 to 1440 min, during which the settling concentration of the tailing sand was 71.33 to 73.42% and the settling capacity was 1.85 to 1.91 g/cm3. It can be judged from the test results that the natural settling of the low concentration tailings slurry can meet the technical specifications required for the filling process, and that the natural settling and concentration of dewatering can save the costs of the relevant facilities and flocculation chemicals, and therefore has good technical and economic feasibility

    Study on Sound Propagation Performance of Mechanized Coal Gangue-Fine Sand Filling Body

    No full text
    In the process of continuous and high-intensity mining in soft rock coal mines, high-quality filling treatment is required for the goaf. A nondestructive acoustic velocimetry method is an excellent way to measure the quality of filling body to effectively maintain the rock stability of the mining area and decrease industrial solid waste. In this study, the gangue and fine sand are used as the filling aggregates, and the uniaxial compression test and acoustic wave test are conducted in the cementitious gangue-sand filling body with different gangue-sand ratio. The results show that the longitudinal wave velocity of the filling body is basically between 1.556 km/s and 2.413 km/s. When the gangue-sand ratio is small, and the slurry concentration is high, the early strength of the cementitious gangue-sand filling body is low, but the later strength has a good growth trend. For specimens with higher strength-filled bodies, the propagation speed of sound waves inside them is also faster, indicating a certain positive correlation between the strength of the filled body and the speed of sound waves. A mathematical equation using longitudinal wave velocity to predict the strength of filling body is established. This equation can be used to predict and judge the quality of the filling body in the mining area

    Analysis and Improvement of Oversize Goaf Backfill Engineering Based on Fuzzy Theory

    No full text
    For the mine of large goaf, there are many factors that affect the filling quality. In order to improve the filling quality, it is necessary to identify the factors that have a significant impact. In this paper, the fuzzy mathematical method was used to analyze the five main factors (PC32.5cement sand ratio, slurry concentration, number of slurry lowering, dehydration and drainage, and tailing particle size grading) affecting the filling quality. The priority of each influence factor was calculated, and the priority set was established. It is found that the slurry launching point and particle size grading of the tailings have an obvious effect on filling quality. After increasing the slurry launching point and optimizing the particle size grading, the strength and uniformity of the filling body are improved

    Study on Solidification Characteristics of Granular Coal Gangue: Fine Sand Paste-Cemented Filling Materials

    No full text
    Three groups of filling materials with different mix proportions were prepared. PO42.5 grade cement was selected as the binding material, mechanized granular coal gangue and fine sand were used as the filling aggregate, and then the specimens were curing at room temperature and 95% moisture. Through the uniaxial compression test, the influence of gangue–sand ratio, the mass fraction, and curing age on the mechanical properties of filling materials was analyzed. The microstructure analysis of SEM was conducted to explore the internal mechanism of the strength difference of filling materials. The results show that the gangue–sand ratio dramatically influences the uniaxial compressive strength. The strength increases first and then decreases with the gangue–sand ratio increase. The mass fraction of filling paste is positively correlated with specimen strength. When the sand–cement ratio, gangue–sand ratio, and the mass fraction remain unchanged, the longer the curing age, the greater the uniaxial compressive strength of specimens. The specimens with a sand–cement ratio of 3.5 : 1, a gangue–sand ratio of 5 : 5, and a mass fraction of 86% reach the maximum value of 11.03 MPa at a curing age of 10 days. It can be seen that when the gangue–sand ratio is 5 : 5, the filling material has the best mechanical properties, so it can be recommended as the optimal mix proportion for goaf filling. Thus, it provides a solid technical guarantee for the treatment of mine surface collapse disasters and the utilization of bulk coal gangue resources
    corecore