1,380 research outputs found
Alfven wave refraction by interplanetary inhomogeneities
Pioneer 6 magnetic data reveals that the propagation direction of Alfven waves in the interplanetary medium is strongly oriented along the ambient field. Magnetic fluctuations of frequencies up to 1/30 sec in the spacecraft frame are shown to satisfy a necessary condition for Alfven wave normal. It appears from this analysis that geometrical hydromagnetics may satisfactorily describe deviation of the wave normal from the background field. The rotational discontinuity is likely also to propagate along the field lines
Iron abundance and magnetic permeability of the moon
A larger set of simultaneous data from the Apollo 12 lunar surface magnetometer and the Explorer 35 Ames magnetometer are used to construct a whole-moon hysteresis curve, from which a new value of global lunar permeability is determined to be mu = 1.012 + or - 0.006. The corresponding global induced dipole moment is 2.1 x 10 to the 18th power gauss-cu cm for typical inducing fields of .0001 gauss in the lunar environment. From the permeability measurement, lunar free iron abundance is determined to be 2.5 + or - 2.0 wt. %. Total iron abundance (sum of iron in the ferromagnetic and paramagnetic states) is calculated for two assumed compositional models of the lunar interior: a free iron/orthopyroxene lunar composition and a free iron/olivine composition. The overall lunar total iron abundance is determined to be 9.0 + or - 4.7 wt. %. Other lunar models with a small iron core and with a shallow iron-rich layer are discussed in light of the measured global permeability
Magnetism and the interior of the moon
The application of lunar magnetic field measurements to the study of properties of the lunar crust and deep interior is reviewed. Following a brief description of lunar magnetometers and the lunar magnetic environment, measurements of lunar remanent fields and their interaction with the solar plasma are discussed. The magnetization induction mode is considered with reference to lunar magnetic permeability and iron abundance calculations. Finally, electrical conductivity and temperature calculations from analyses of poloidal induction, for data taken in both the solar wind and in the geomagnetic tail, are reviewed
Lunar electrical conductivity, permeability,and temperature from Apollo magnetometer experiments
Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate and electrical conductivity profile for the moon, and those profiles were used to calculate the lunar temperature for an assumed lunar material of olivine. Simultaneous measurements by magnetometers on the lunar surface and in orbit around the moon were use to construct a whole-moon hysteresis curve, from which the global lunar magnetic permeability is determined. Total iron abundance (sum of iron in the ferromagnetic and paramagnetic states) was calculated for two assumed compositional models of the lunar interior. Other lunar models with an iron core and with a shallow iron-rich layer also discussed in light of the measured global lunar permeability. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Velocities and thicknesses of the earth's magnetopause and bow shock were also estimated from simultaneous magnetometer measurements
Temperature and electrical conductivity of the lunar interior from magnetic transient measurements in the geomagnetic tail
Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients in the geomagnetic tail field, were analyzed to calculate an electrical conductivity profile for the moon: the conductivity increases rapidly with depth from 10 to the minus 9 power mhos/meter at the lunar surface to .0001 mhos/meter at 200 km depth, then less rapidly to .02 mhos/meter at 1000 km depth. A temperature profile is calculated from conductivity: temperature rises rapidly with depth to 1100 K at 200 km depth, then less rapidly to 1800 K at 1000 km depth. Velocities and thicknesses of the earth's magnetopause and bow shock are estimated from simultaneous magnetometer measurements. Average speeds are determined to be about 50 km/sec for the magnetopause and 70 km/sec for the bow shock, although there are large variations in the measurements for any particular boundary crossing
Iron abundance in the moon from magnetometer measurements
Apollo 12 and 15 lunar surface magnetometer data with simultaneous lunar orbiting Explorer 35 data are used to plot hysteresis curves for the whole moon. From these curves a whole-moon permeability mu = 1.029 + 0.024 or - 0.019 is calculated. This result implies that the moon is not composed entirely of paramagnetic material, but that ferromagnetic material such as free iron exists in sufficient amounts to dominate the bulk lunar susceptibility. From the magnetic data the ferromagnetic free iron abundance is calculated. Then for assumed compositional models of the moon the additional paramagnetic iron is determined, yielding total lunar iron content. The calculated abundances are as follows: ferromagnetic free iron = 5 + or - 4 wt. percent, and total iron in the moon = 9 + or - 4 wt. percent
DUSEL Facility Cooling Water Scaling Issues
Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the oilfield include calcium carbonates (CaCO3, mainly calcite) and alkaline-earth metal sulfates (barite BaSO4, celestite SrSO4, anhydrite CaSO4, hemihydrate CaSO4 1/2H2O, and gypsum CaSO4 2H2O or calcium sulfate). The cause of scaling can be difficult to identify in real oil and gas wells. However, pressure and temperature changes during the flow of fluids are primary reasons for the formation of carbonate scales, because the escape of CO2 and/or H2S gases out of the brine solution, as pressure is lowered, tends to elevate the pH of the brine and result in super-saturation with respect to carbonates. Concerning sulfate scales, the common cause is commingling of different sources of brines either due to breakthrough of injected incompatible waters or mixing of two different brines from different zones of the reservoir formation. A decrease in temperature tends to cause barite to precipitate, opposite of calcite. In addition, pressure drops tend to cause all scale minerals to precipitate due to the pressure dependence of the solubility product. And we can expect that there will be a pressure drop across the heat exchanger. Weather or not this will be offset by the rise in pressure remains to be seen. It's typically left to field testing to prove out. Progress has been made toward the control and treatment of the scale deposits, although most of the reaction mechanisms are still not well understood. Often the most efficient and economic treatment for scale formation is to apply threshold chemical inhibitors. Threshold scale inhibitors are like catalysts and have inhibition efficiency at very low concentrations (commonly less than a few mg/L), far below the stoichiometric concentrations of the crystal lattice ions in solution. There are many chemical classes of inhibitors and even more brands on the market. Based on the water chemistry it is anticipated that there is a high likelihood for sulfate compound precipitation and scaling. This may be dependent on the temperature and pressure, which vary throughout the system. Therefore, various types and amounts of scaling may occur at different locations. Although it has been shown that decreased pressure causes increased scaling, it is unclear if this condition will have significant affect, as all the pressures are low. Sulfate concentrations predominate, but there is still a chance for calcium carbonate buildup, especially in the heat exchanger where the temperatures are rising. Additional information is needed to conduct a thorough analysis, but it would appear that a fairly simple injection system would be sufficient to address scaling issues
Crustal evolution inferred from Apollo magnetic measurements
Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments
Lunar electrical conductivity, permeability and temperature from Apollo magnetometer experiments
Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. The measured lunar remanent fields range from 3 gammas minimum at the Apollo 15 site to 327 gammas maximum at the Apollo 16 site. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Remanent fields at Apollo 12 and Apollo 16 are increased 16 gammas and 32 gammas, respectively, by a solar plasma bulk pressure increase of 1.5 X 10 to the -7th power dynes/sq cm. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate an electrical conductivity profile for the moon. From nightside magnetometer data in the solar wind it was found that deeper than 170 km into the moon the conductivity rises from .0003 mhos/m to .10 mhos/m at 100 km depth. Recent analysis of data obtained in the geomagnetic tail, in regions free of complicating plasma effects, yields results consistent with nightside values
- …