3 research outputs found

    Phenotypic Switching of Vascular Smooth Muscle Cells in Atherosclerosis

    No full text
    The medial layer of the arterial wall is composed mainly of vascular smooth muscle cells (VSMCs). Under physiological conditions, VSMCs assume a contractile phenotype, and their primary function is to regulate vascular tone. In contrast with terminally differentiated cells, VSMCs possess phenotypic plasticity, capable of transitioning into other cellular phenotypes in response to changes in the vascular environment. Recent research has shown that VSMC phenotypic switching participates in the pathogenesis of atherosclerosis, where the various types of dedifferentiated VSMCs accumulate in the atherosclerotic lesion and participate in the associated vascular remodeling by secreting extracellular matrix proteins and proteases. This review article discusses the 9 VSMC phenotypes that have been reported in atherosclerotic lesions and classifies them into differentiated VSMCs, intermediately dedifferentiated VSMCs, and dedifferentiated VSMCs. It also provides an overview of several methodologies that have been developed for studying VSMC phenotypic switching and discusses their respective advantages and limitations

    Hypoxia Suppresses TGF-B1-Induced Cardiac Myocyte Myofibroblast Transformation by Inhibiting Smad2/3 and Rhoa Signaling Pathways

    No full text
    Background/Aims: Hypoxia modulation of transforming growth factor (TGF)- β-induced signaling during myofibroblast transformation is dependent on the specific cell type. The purpose of this study was to explore the effects of hypoxia on myofibroblast transformation of TGF-β1-induced cardiomyocyte H9c2 cells. Methods: H9c2 cells were cultured for intermittent hypoxia treatment and TGF-β1 treatment. α-Smooth muscle actin (α-SMA) expression was examined by western blotting and immunofluorescence after treatment. To further explore the possible mechanism for this effect, the effects of hypoxia on three early TGF-β-dependent signaling pathways, i.e. the Smad2/3, RhoA and mitogen-activated protein kinase (MAPK) pathways, were screened by western blotting. Results: Intermittent hypoxia induced TGF-β1 expression, but had no effect on α-SMA expression. Exogenous TGF-β1 alone upregulated α-SMA expression in H9c2 cells in a concentration- and time-dependent manner. α-SMA expression declined with the duration of hypoxia after intermittent hypoxia and exogenous TGF-β1 co-treatment. Phospho-JNK and phospho-p38 levels were not significantly altered after TGF-β1 and hypoxia treatment. However, levels of phospho-ERK increased after TGF-β1 treatment and continued to increase after hypoxia co-treatment. The activation of phospho-Smad2/3 and phospho-RhoA induced by TGFβ1 was significantly reduced after hypoxia co-treatment. Conclusion: Hypoxia can inhibit TGF-β1-induced H9c2 myofibroblast transformation, based on inhibition of α-SMA expression by suppressing signaling downstream of TGF-β1, Smad2/3 and RhoA. It suggested that TGF-β-mediated cardiomyocyte transformation is not involved in hypoxia-mediated fibrosis
    corecore