1,168 research outputs found

    P2X receptors: epithelial ion channels and regulators of salt and water transport.

    Get PDF
    When the results from electrophysiological studies of renal epithelial cells are combined with data from in vivo tubule microperfusion experiments and immunohistochemical surveys of the nephron, the accumulated evidence suggests that ATP-gated ion channels, P2X receptors, play a specialized role in the regulation of ion and water movement across the renal tubule and are integral to electrolyte and fluid homeostasis. In this short review, we discuss the concept of P2X receptors as regulators of salt and water salvage pathways, as well as acknowledging their accepted role as ATP-gated ion channels

    Radial Growth of Qilian Juniper on the Northeast Tibetan Plateau and Potential Climate Associations

    Get PDF
    There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110–2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes

    A knowledge-based design advisory system for collaborative design for micromanufacturing

    Get PDF
    The manufacture of microproducts differs from that of conventional products in many ways, not only in the sizes, but also in issues concerning the effects of material properties, tools, and manufacturing equipment. There was a need for a new design methodology and associated design tools to aid designers in assessing the design of their microproducts by considering new micromanufacturing capabilities and constraints. A knowledge-based design advisory system (DAS) was, therefore, developed in MASMICRO in which the knowledge-based system with dedicated assessment modules and knowledge representatives based on the ontology was created to implement the distributed design and manufacturing assessment for micromanufacturing. The modules address the assessment on geometrical features relating to manufacturability, manufacturing processes, selection of materials, tools, and machines, as well as manufacturing cost. The Microsoft C# programming language, ASP.NET web technology, Prolog, and Microsoft Access database were used to develop the DAS. The test on the DAS prototype system was found to provide an increase of design efficiency due to more efficient use of design and manufacturing knowledge and afforded a web-based collaborative design environment

    SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Get PDF
    SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices

    SiC Nanorods Grown on Electrospun Nanofibers Using Tb as Catalyst: Fabrication, Characterization, and Photoluminescence Properties

    Get PDF
    Well-crystallizedβ-SiC nanorods grown on electrospun nanofibers were synthesized by carbothermal reduction of Tb doped SiO2(SiO2:Tb) nanofibers at 1,250 °C. The as-synthesized SiC nanorods were 100–300 nm in diameter and 2–3 μm in length. Scanning electron microscopy (SEM) results suggested that the growth of the SiC nanorods should be governed by vapor-liquid-solid (VLS) mechanism with Tb metal as catalyst. Tb(NO3)3particles on the surface of the electrospun nanofibers were decomposed at 500 °C and later reduced to the formation of Tb nanoclusters at 1,200 °C, and finally the formation of a Si–C–Tb ally droplet will stimulate the VLS growth at 1,250 °C. Microstructure of the nanorod was further investigated by transmission electron microscopy (TEM). It was found that SiC <111> is the preferred initial growth direction. The liquid droplet was identified to be Si86Tb14, which acted as effective catalyst. Strong green emissions were observed from the SiC nanorod samples. Four characteristic photoluminescence (PL) peaks of Tb ions were also identified

    Sesquiterpenoids From the Antarctic Fungus Pseudogymnoascus sp. HSX2#-11

    Get PDF
    The fungal strains Pseudogymnoascus are a kind of psychrophilic pathogenic fungi that are ubiquitously distributed in Antarctica, while the studies of their secondary metabolites are infrequent. Systematic research of the metabolites of the fungus Pseudogymnoascus sp. HSX2#-11 led to the isolation of six new tremulane sesquiterpenoids pseudotremulanes A–F (1–6), combined with one known analog 11,12-epoxy-12β-hydroxy-1-tremulen-5-one (7), and five known steroids (8–12). The absolute configurations of the new compounds (1–6) were elucidated by their ECD spectra and ECD calculations. Compounds 1–7 were proved to be isomeride structures with the same chemical formula. Compounds 1/2, 3/4, 1/4, and 2/3 were identified as four pairs of epimerides at the locations of C-3, C-3, C-9, and C-9, respectively. Compounds 8 and 9 exhibited cytotoxic activities against human breast cancer (MDA-MB-231), colorectal cancer (HCT116), and hepatoma (HepG2) cell lines. Compounds 9 and 10 also showed antibacterial activities against marine fouling bacteria Aeromonas salmonicida. This is the first time to find terpenoids and steroids in the fungal genus Pseudogymnoascus

    PDGF-C Induces Maturation of Blood Vessels in a Model of Glioblastoma and Attenuates the Response to Anti-VEGF Treatment

    Get PDF
    Recent clinical trials of VEGF inhibitors have shown promise in the treatment of recurrent glioblastomas (GBM). However, the survival benefit is usually short-lived as tumors escape anti-VEGF therapies. Here we tested the hypothesis that Platelet Derived Growth Factor-C (PDGF-C), an isoform of the PDGF family, affects GBM progression independent of VEGF pathway and hinders anti-VEGF therapy.We first showed that PDGF-C is present in human GBMs. Then, we overexpressed or downregulated PDGF-C in a human GBM cell line, U87MG, and grew them in cranial windows in nude mice to assess vessel structure and function using intravital microscopy. PDGF-C overexpressing tumors had smaller vessel diameters and lower vascular permeability compared to the parental or siRNA-transfected tumors. Furthermore, vessels in PDGF-C overexpressing tumors had more extensive coverage with NG2 positive perivascular cells and a thicker collagen IV basement membrane than the controls. Treatment with DC101, an anti-VEGFR-2 antibody, induced decreases in vessel density in the parental tumors, but had no effect on the PDGF-C overexpressing tumors.These results suggest that PDGF-C plays an important role in glioma vessel maturation and stabilization, and that it can attenuate the response to anti-VEGF therapy, potentially contributing to escape from vascular normalization

    Structural and Mutational Analysis of Functional Differentiation between Synaptotagmins-1 and -7

    Get PDF
    Synaptotagmins are known to mediate diverse forms of Ca2+-triggered exocytosis through their C2 domains, but the principles underlying functional differentiation among them are unclear. Synaptotagmin-1 functions as a Ca2+ sensor in neurotransmitter release at central nervous system synapses, but synaptotagmin-7 does not, and yet both isoforms act as Ca2+ sensors in chromaffin cells. To shed light into this apparent paradox, we have performed rescue experiments in neurons from synaptotagmin-1 knockout mice using a chimera that contains the synaptotagmin-1 sequence with its C2B domain replaced by the synaptotagmin-7 C2B domain (Syt1/7). Rescue was not achieved either with the WT Syt1/7 chimera or with nine mutants where residues that are distinct in synaptotagmin-7 were restored to those present in synaptotagmin-1. To investigate whether these results arise because of unique conformational features of the synaptotagmin-7 C2B domain, we determined its crystal structure at 1.44 Ã… resolution. The synaptotagmin-7 C2B domain structure is very similar to that of the synaptotagmin-1 C2B domain and contains three Ca2+-binding sites. Two of the Ca2+-binding sites of the synaptotagmin-7 C2B domain are also present in the synaptotagmin-1 C2B domain and have analogous ligands to those determined for the latter by NMR spectroscopy, suggesting that a discrepancy observed in a crystal structure of the synaptotagmin-1 C2B domain arose from crystal contacts. Overall, our results suggest that functional differentiation in synaptotagmins arises in part from subtle sequence changes that yield dramatic functional differences

    Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years

    Get PDF
    The North Atlantic experiences climate variability on multidecadal scales, which is sometimes referred to as Atlantic multidecadal variability. However, the relative contributions of external forcing such as changes in solar irradiance or volcanic activity and internal dynamics to these variations are unclear. Here we provide evidence for persistent summer Atlantic multidecadal variability from AD 800 to 2010 using a network of annually resolved terrestrial proxy records from the circum-North Atlantic region. We find that large volcanic eruptions and solar irradiance minima induce cool phases of Atlantic multidecadal variability and collectively explain about 30% of the variance in the reconstruction on timescales greater than 30 years. We are then able to isolate the internally generated component of Atlantic multidecadal variability, which we define as the Atlantic multidecadal oscillation. We find that the Atlantic multidecadal oscillation is the largest contributor to Atlantic multidecadal variability over the past 1,200 years. We also identify coherence between the Atlantic multidecadal oscillation and Northern Hemisphere temperature variations, leading us to conclude that the apparent link between Atlantic multidecadal variability and regional to hemispheric climate does not arise solely from a common response to external drivers, and may instead reflect dynamic processes

    Beta-Catenin Phosphorylated at Threonine 120 Antagonizes Generation of Active Beta-Catenin by Spatial Localization in trans-Golgi Network

    Get PDF
    The stability and subcellular localization of beta-catenin, a protein that plays a major role in cell adhesion and proliferation, is tightly regulated by multiple signaling pathways. While aberrant activation of beta-catenin signaling has been implicated in cancers, the biochemical identity of transcriptionally active beta-catenin (ABC), commonly known as unphosphorylated serine 37 (S37) and threonine 41 (T41) β-catenin, remains elusive. Our current study demonstrates that ABC transcriptional activity is influenced by phosphorylation of T120 by Protein Kinase D1 (PKD1). Whereas the nuclear β-catenin from PKD1-low prostate cancer cell line C4-2 is unphosphorylated S37/T41/T120 with high transcription activity, the nuclear β-catenin from PKD1-overexpressing C4-2 cells is highly phosphorylated at T120, S37 and T41 with low transcription activity, implying that accumulation of nuclear β-catenin alone cannot be simply used as a read-out for Wnt activation. In human normal prostate tissue, the phosphorylated T120 β-catenin is mainly localized to the trans-Golgi network (TGN, 22/30, 73%), and this pattern is significantly altered in prostate cancer (14/197, 7.1%), which is consistent with known down regulation of PKD1 in prostate cancer. These in vitro and in vivo data unveil a previously unrecognized post-translational modification of ABC through T120 phosphorylation by PKD1, which alters subcellular localization and transcriptional activity of β-catenin. Our results support the view that β-catenin signaling activity is regulated by spatial compartmentation and post-translational modifications and protein level of β-catenin alone is insufficient to count signaling activity
    • …
    corecore